These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29481286)

  • 1. Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model.
    Bragança H; Sakai S; Aguiar MCO; Civelli M
    Phys Rev Lett; 2018 Feb; 120(6):067002. PubMed ID: 29481286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling superconductivity, pseudogap, and Mott transition.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Phys Rev Lett; 2012 May; 108(21):216401. PubMed ID: 23003285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimensional-crossover-driven Mott transition in the frustrated Hubbard model.
    Raczkowski M; Assaad FF
    Phys Rev Lett; 2012 Sep; 109(12):126404. PubMed ID: 23005966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An organizing principle for two-dimensional strongly correlated superconductivity.
    Fratino L; Sémon P; Sordi G; Tremblay AM
    Sci Rep; 2016 Mar; 6():22715. PubMed ID: 26964524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical breakup of the fermi surface in a doped Mott insulator.
    Civelli M; Capone M; Kancharla SS; Parcollet O; Kotliar G
    Phys Rev Lett; 2005 Sep; 95(10):106402. PubMed ID: 16196948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collapse of the normal-state pseudogap at a Lifshitz transition in the Bi(2)Sr(2)CaCu(2)O(8+δ) cuprate superconductor.
    Benhabib S; Sacuto A; Civelli M; Paul I; Cazayous M; Gallais Y; Méasson MA; Zhong RD; Schneeloch J; Gu GD; Colson D; Forget A
    Phys Rev Lett; 2015 Apr; 114(14):147001. PubMed ID: 25910152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strongly correlated superconductivity and pseudogap phase near a multiband Mott insulator.
    Capone M; Fabrizio M; Castellani C; Tosatti E
    Phys Rev Lett; 2004 Jul; 93(4):047001. PubMed ID: 15323784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change of carrier density at the pseudogap critical point of a cuprate superconductor.
    Badoux S; Tabis W; Laliberté F; Grissonnanche G; Vignolle B; Vignolles D; Béard J; Bonn DA; Hardy WN; Liang R; Doiron-Leyraud N; Taillefer L; Proust C
    Nature; 2016 Mar; 531(7593):210-4. PubMed ID: 26901870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of electronic structure of doped Mott insulators: reconstruction of poles and zeros of Green's function.
    Sakai S; Motome Y; Imada M
    Phys Rev Lett; 2009 Feb; 102(5):056404. PubMed ID: 19257530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors.
    Grissonnanche G; Legros A; Badoux S; Lefrançois E; Zatko V; Lizaire M; Laliberté F; Gourgout A; Zhou JS; Pyon S; Takayama T; Takagi H; Ono S; Doiron-Leyraud N; Taillefer L
    Nature; 2019 Jul; 571(7765):376-380. PubMed ID: 31316196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic order and Mott transition on the checkerboard lattice.
    Swain N; Majumdar P
    J Phys Condens Matter; 2017 Mar; 29(8):085603. PubMed ID: 28000619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudogap temperature as a Widom line in doped Mott insulators.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Sci Rep; 2012; 2():547. PubMed ID: 22855703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudogap in cuprates driven by D-wave flux-phase order proximity effects: a theoretical analysis from Raman and ARPES experiments.
    Greco A; Bejas M
    J Phys Condens Matter; 2014 Dec; 26(48):485701. PubMed ID: 25380387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite doping signatures of the Mott transition in the two-dimensional Hubbard model.
    Sordi G; Haule K; Tremblay AM
    Phys Rev Lett; 2010 Jun; 104(22):226402. PubMed ID: 20867185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SU(2) gauge theory of the Hubbard model: emergence of an anomalous metallic phase near the Mott critical point.
    Kim KS
    Phys Rev Lett; 2006 Sep; 97(13):136402. PubMed ID: 17026056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductivity and the pseudogap in the two-dimensional Hubbard model.
    Gull E; Parcollet O; Millis AJ
    Phys Rev Lett; 2013 May; 110(21):216405. PubMed ID: 23745902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral properties near the Mott transition in the one-dimensional Hubbard model.
    Kohno M
    Phys Rev Lett; 2010 Sep; 105(10):106402. PubMed ID: 20867533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudogap phase of cuprate superconductors confined by Fermi surface topology.
    Doiron-Leyraud N; Cyr-Choinière O; Badoux S; Ataei A; Collignon C; Gourgout A; Dufour-Beauséjour S; Tafti FF; Laliberté F; Boulanger ME; Matusiak M; Graf D; Kim M; Zhou JS; Momono N; Kurosawa T; Takagi H; Taillefer L
    Nat Commun; 2017 Dec; 8(1):2044. PubMed ID: 29229909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model.
    Sherman A
    J Phys Condens Matter; 2018 May; 30(19):195601. PubMed ID: 29583129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nodal-antinodal dichotomy and the two gaps of a superconducting doped Mott insulator.
    Civelli M; Capone M; Georges A; Haule K; Parcollet O; Stanescu TD; Kotliar G
    Phys Rev Lett; 2008 Feb; 100(4):046402. PubMed ID: 18352310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.