These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29481322)

  • 1. CATaDa reveals global remodelling of chromatin accessibility during stem cell differentiation in vivo.
    Aughey GN; Estacio Gomez A; Thomson J; Yin H; Southall TD
    Elife; 2018 Feb; 7():. PubMed ID: 29481322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction of a DNA methyltransferase into Drosophila to probe chromatin structure in vivo.
    Wines DR; Talbert PB; Clark DV; Henikoff S
    Chromosoma; 1996; 104(5):332-40. PubMed ID: 8575244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic mapping of chromatin proteins by using Dam
    Pindyurin AV
    Dokl Biochem Biophys; 2017 Jan; 472(1):15-18. PubMed ID: 28421443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.
    Zhao MT; Shao NY; Hu S; Ma N; Srinivasan R; Jahanbani F; Lee J; Zhang SL; Snyder MP; Wu JC
    Circ Res; 2017 Nov; 121(11):1237-1250. PubMed ID: 29030344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase.
    van Steensel B; Henikoff S
    Nat Biotechnol; 2000 Apr; 18(4):424-8. PubMed ID: 10748524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans.
    Sha K; Gu SG; Pantalena-Filho LC; Goh A; Fleenor J; Blanchard D; Krishna C; Fire A
    BMC Genomics; 2010 Aug; 11():465. PubMed ID: 20691096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large chromatin domains in pluripotent and differentiated cells.
    Hu S; Cheng L; Wen B
    Acta Biochim Biophys Sin (Shanghai); 2012 Jan; 44(1):48-53. PubMed ID: 22194013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin accessibility dynamics reveal novel functional enhancers in
    Daugherty AC; Yeo RW; Buenrostro JD; Greenleaf WJ; Kundaje A; Brunet A
    Genome Res; 2017 Dec; 27(12):2096-2107. PubMed ID: 29141961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and mapping of open chromatin regions within a 140 kb polygenic locus of human chromosome 19 using E. coli Dam methylase.
    Bulanenkova S; Snezhkov E; Nikolaev L; Sverdlov E
    Genetica; 2007 May; 130(1):83-92. PubMed ID: 16897455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic stem cell differentiation: a chromatin perspective.
    Rasmussen TP
    Reprod Biol Endocrinol; 2003 Nov; 1():100. PubMed ID: 14614777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tackling the epigenome in the pluripotent stem cells.
    Zhao X; Ruan Y; Wei CL
    J Genet Genomics; 2008 Jul; 35(7):403-12. PubMed ID: 18640620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormone-dependent control of developmental timing through regulation of chromatin accessibility.
    Uyehara CM; Nystrom SL; Niederhuber MJ; Leatham-Jensen M; Ma Y; Buttitta LA; McKay DJ
    Genes Dev; 2017 May; 31(9):862-875. PubMed ID: 28536147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dam methylase accessibility as an instrument for analysis of mammalian chromatin structure.
    Bulanenkova SS; Kozlova AA; Kotova ES; Snezhkov EV; Azhikina TL; Akopov SB; Nikolaev LG; Sverdlov ED
    Epigenetics; 2011 Sep; 6(9):1078-84. PubMed ID: 21814036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in chromatin accessibility ensure robust cell cycle exit in terminally differentiated cells.
    Ma Y; McKay DJ; Buttitta L
    PLoS Biol; 2019 Sep; 17(9):e3000378. PubMed ID: 31479438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The epigenome in pluripotency and differentiation.
    Thiagarajan RD; Morey R; Laurent LC
    Epigenomics; 2014 Feb; 6(1):121-37. PubMed ID: 24579950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin state changes during neural development revealed by in vivo cell-type specific profiling.
    Marshall OJ; Brand AH
    Nat Commun; 2017 Dec; 8(1):2271. PubMed ID: 29273756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative classification of chromatin dynamics reveals regulators of intestinal stem cell differentiation.
    Raab JR; Tulasi DY; Wager KE; Morowitz JM; Magness ST; Gracz AD
    Development; 2020 Jan; 147(1):. PubMed ID: 31862843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and in silico modeling of enhancers reveals new features of the cardiac differentiation network.
    Seyres D; Ghavi-Helm Y; Junion G; Taghli-Lamallem O; Guichard C; Röder L; Girardot C; Furlong EE; Perrin L
    Development; 2016 Dec; 143(23):4533-4542. PubMed ID: 27899510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes of the epigenetic landscape during cellular differentiation.
    Dambacher S; de Almeida GP; Schotta G
    Epigenomics; 2013 Dec; 5(6):701-13. PubMed ID: 24283883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin profiling using targeted DNA adenine methyltransferase.
    van Steensel B; Delrow J; Henikoff S
    Nat Genet; 2001 Mar; 27(3):304-8. PubMed ID: 11242113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.