These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29481322)

  • 21. Identification and in silico modeling of enhancers reveals new features of the cardiac differentiation network.
    Seyres D; Ghavi-Helm Y; Junion G; Taghli-Lamallem O; Guichard C; Röder L; Girardot C; Furlong EE; Perrin L
    Development; 2016 Dec; 143(23):4533-4542. PubMed ID: 27899510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic changes of the epigenetic landscape during cellular differentiation.
    Dambacher S; de Almeida GP; Schotta G
    Epigenomics; 2013 Dec; 5(6):701-13. PubMed ID: 24283883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromatin profiling using targeted DNA adenine methyltransferase.
    van Steensel B; Delrow J; Henikoff S
    Nat Genet; 2001 Mar; 27(3):304-8. PubMed ID: 11242113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concentration dependent chromatin states induced by the bicoid morphogen gradient.
    Hannon CE; Blythe SA; Wieschaus EF
    Elife; 2017 Sep; 6():. PubMed ID: 28891464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development.
    Koh PW; Sinha R; Barkal AA; Morganti RM; Chen A; Weissman IL; Ang LT; Kundaje A; Loh KM
    Sci Data; 2016 Dec; 3():160109. PubMed ID: 27996962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility.
    Mieczkowski J; Cook A; Bowman SK; Mueller B; Alver BH; Kundu S; Deaton AM; Urban JA; Larschan E; Park PJ; Kingston RE; Tolstorukov MY
    Nat Commun; 2016 May; 7():11485. PubMed ID: 27151365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation.
    Gargiulo G; Levy S; Bucci G; Romanenghi M; Fornasari L; Beeson KY; Goldberg SM; Cesaroni M; Ballarini M; Santoro F; Bezman N; Frigè G; Gregory PD; Holmes MC; Strausberg RL; Pelicci PG; Urnov FD; Minucci S
    Dev Cell; 2009 Mar; 16(3):466-81. PubMed ID: 19289091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histone acetylation and chromatin signature in stem cell identity and cancer.
    Shukla V; Vaissière T; Herceg Z
    Mutat Res; 2008 Jan; 637(1-2):1-15. PubMed ID: 17850830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DamID as a versatile tool for understanding gene regulation.
    Aughey GN; Cheetham SW; Southall TD
    Development; 2019 Mar; 146(6):. PubMed ID: 30877125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmable genetic switches to control transcriptional machinery of pluripotency.
    Pandian GN; Sugiyama H
    Biotechnol J; 2012 Jun; 7(6):798-809. PubMed ID: 22588775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo.
    Chen PB; Zhu LJ; Hainer SJ; McCannell KN; Fazzio TG
    BMC Genomics; 2014 Dec; 15(1):1104. PubMed ID: 25494698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis.
    Liu Y; Chang JC; Hon CC; Fukui N; Tanaka N; Zhang Z; Lee MTM; Minoda A
    Sci Rep; 2018 Oct; 8(1):15499. PubMed ID: 30341348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation.
    Peterson SN; Reich NO
    J Mol Biol; 2008 Oct; 383(1):92-105. PubMed ID: 18706913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Cancer.
    Gomez NC; Hepperla AJ; Dumitru R; Simon JM; Fang F; Davis IJ
    Cell Rep; 2016 Nov; 17(6):1607-1620. PubMed ID: 27806299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normal and pathological development of pluripotent stem cells.
    Gordeeva OF
    J Stem Cells; 2011; 6(3):129-54. PubMed ID: 23264998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation.
    Keenen B; de la Serna IL
    J Cell Physiol; 2009 Apr; 219(1):1-7. PubMed ID: 19097034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BPTF Maintains Chromatin Accessibility and the Self-Renewal Capacity of Mammary Gland Stem Cells.
    Frey WD; Chaudhry A; Slepicka PF; Ouellette AM; Kirberger SE; Pomerantz WCK; Hannon GJ; Dos Santos CO
    Stem Cell Reports; 2017 Jul; 9(1):23-31. PubMed ID: 28579392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X Inactivation.
    Postlmayr A; Wutz A
    J Mol Biol; 2017 May; 429(10):1521-1531. PubMed ID: 28315662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The BAF chromatin remodelling complex is an epigenetic regulator of lineage specification in the early mouse embryo.
    Panamarova M; Cox A; Wicher KB; Butler R; Bulgakova N; Jeon S; Rosen B; Seong RH; Skarnes W; Crabtree G; Zernicka-Goetz M
    Development; 2016 Apr; 143(8):1271-83. PubMed ID: 26952987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.
    Meshorer E; Yellajoshula D; George E; Scambler PJ; Brown DT; Misteli T
    Dev Cell; 2006 Jan; 10(1):105-16. PubMed ID: 16399082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.