BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29481639)

  • 1. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls.
    Yi Chou E; Schuetz M; Hoffmann N; Watanabe Y; Sibout R; Samuels AL
    J Exp Bot; 2018 Apr; 69(8):1849-1859. PubMed ID: 29481639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PIRIN2 suppresses S-type lignin accumulation in a noncell-autonomous manner in Arabidopsis xylem elements.
    Zhang B; Sztojka B; Escamez S; Vanholme R; Hedenström M; Wang Y; Turumtay H; Gorzsás A; Boerjan W; Tuominen H
    New Phytol; 2020 Mar; 225(5):1923-1935. PubMed ID: 31625609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cell biology of lignification in higher plants.
    Barros J; Serk H; Granlund I; Pesquet E
    Ann Bot; 2015 Jun; 115(7):1053-74. PubMed ID: 25878140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulation of lignin biosynthesis.
    Zhong R; Ye ZH
    Plant Signal Behav; 2009 Nov; 4(11):1028-34. PubMed ID: 19838072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid.
    Kankaanpää S; Väisänen E; Goeminne G; Soliymani R; Desmet S; Samoylenko A; Vainio S; Wingsle G; Boerjan W; Vanholme R; Kärkönen A
    Plant Physiol; 2024 May; ():. PubMed ID: 38771246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dwarfism of high-monolignol Arabidopsis plants is rescued by ectopic LACCASE overexpression.
    Perkins ML; Schuetz M; Unda F; Smith RA; Sibout R; Hoffmann NJ; Wong DCJ; Castellarin SD; Mansfield SD; Samuels L
    Plant Direct; 2020 Sep; 4(9):e00265. PubMed ID: 33005856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl.
    Behr M; Sergeant K; Leclercq CC; Planchon S; Guignard C; Lenouvel A; Renaut J; Hausman JF; Lutts S; Guerriero G
    BMC Plant Biol; 2018 Jan; 18(1):1. PubMed ID: 29291729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana.
    Higa T; Kijima ST; Sasaki T; Takatani S; Asano R; Kondo Y; Wakazaki M; Sato M; Toyooka K; Demura T; Fukuda H; Oda Y
    Nat Plants; 2024 Jan; 10(1):100-117. PubMed ID: 38172572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated -omics: a powerful approach to understanding the heterogeneous lignification of fibre crops.
    Guerriero G; Sergeant K; Hausman JF
    Int J Mol Sci; 2013 May; 14(6):10958-78. PubMed ID: 23708098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography.
    Polo CC; Pereira L; Mazzafera P; Flores-Borges DNA; Mayer JLS; Guizar-Sicairos M; Holler M; Barsi-Andreeta M; Westfahl H; Meneau F
    Sci Rep; 2020 Apr; 10(1):6023. PubMed ID: 32265529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laccases and Peroxidases Co-Localize in Lignified Secondary Cell Walls throughout Stem Development.
    Hoffmann N; Benske A; Betz H; Schuetz M; Samuels AL
    Plant Physiol; 2020 Oct; 184(2):806-822. PubMed ID: 32699027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR and LC-MS-based metabolomics to investigate the efficacy of a commercial bio stimulant for the treatment of wheat (Triticum aestivum).
    Hamade K; Fliniaux O; Fontaine JX; Molinié R; Petit L; Mathiron D; Sarazin V; Mesnard F
    Metabolomics; 2024 May; 20(3):58. PubMed ID: 38773056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Laccase Family Gene
    Li D; Zhang H; Zhou Q; Tao Y; Wang S; Wang P; Wang A; Wei C; Liu S
    Plants (Basel); 2024 Mar; 13(6):. PubMed ID: 38592904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grass lignin: biosynthesis, biological roles, and industrial applications.
    Peracchi LM; Panahabadi R; Barros-Rios J; Bartley LE; Sanguinet KA
    Front Plant Sci; 2024; 15():1343097. PubMed ID: 38463570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter.
    Delmer D; Dixon RA; Keegstra K; Mohnen D
    Plant Cell; 2024 May; 36(5):1257-1311. PubMed ID: 38301734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural differences of cell walls in earlywood and latewood of
    Liszka A; Wightman R; Latowski D; Bourdon M; Krogh KBRM; Pietrzykowski M; Lyczakowski JJ
    Front Plant Sci; 2023; 14():1283093. PubMed ID: 38148867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome and miRNAs Profiles Reveal Regulatory Network and Key Regulators of Secondary Xylem Formation in "84K" Poplar.
    Wang H; Zhao P; He Y; Su Y; Zhou X; Guo H
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin, the Lignification Process, and Advanced, Lignin-Based Materials.
    Balk M; Sofia P; Neffe AT; Tirelli N
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis.
    Blaschek L; Murozuka E; Serk H; Ménard D; Pesquet E
    Plant Cell; 2023 Feb; 35(2):889-909. PubMed ID: 36449969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of PaRBOH1-mediated ROS production in Norway spruce by Ca
    Nickolov K; Gauthier A; Hashimoto K; Laitinen T; Väisänen E; Paasela T; Soliymani R; Kurusu T; Himanen K; Blokhina O; Fagerstedt KV; Jokipii-Lukkari S; Tuominen H; Häggman H; Wingsle G; Teeri TH; Kuchitsu K; Kärkönen A
    Front Plant Sci; 2022; 13():978586. PubMed ID: 36311083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.