These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29481839)

  • 1. Anammox Organism KSU-1 Expresses a Novel His/DOPA Ligated Cytochrome c.
    Hira D; Kitamura R; Nakamura T; Yamagata Y; Furukawa K; Fujii T
    J Mol Biol; 2018 Apr; 430(8):1189-1200. PubMed ID: 29481839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nitric oxide-binding heterodimeric cytochrome
    Akram M; Reimann J; Dietl A; Menzel A; Versantvoort W; Kartal B; Jetten MSM; Barends TRM
    J Biol Chem; 2019 Nov; 294(45):16712-16728. PubMed ID: 31548310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1.
    Hira D; Toh H; Migita CT; Okubo H; Nishiyama T; Hattori M; Furukawa K; Fujii T
    FEBS Lett; 2012 Jun; 586(11):1658-63. PubMed ID: 22673575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anammox Biochemistry: a Tale of Heme c Proteins.
    Kartal B; Keltjens JT
    Trends Biochem Sci; 2016 Dec; 41(12):998-1011. PubMed ID: 27669648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a nitrite-reducing octaheme hydroxylamine oxidoreductase that lacks the tyrosine cross-link.
    Ferousi C; Schmitz RA; Maalcke WJ; Lindhoud S; Versantvoort W; Jetten MSM; Reimann J; Kartal B
    J Biol Chem; 2021; 296():100476. PubMed ID: 33652023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the type II cytochrome c maturation pathway in anammox bacteria by comparative genomics.
    Ferousi C; Speth DR; Reimann J; Op den Camp HJ; Allen JW; Keltjens JT; Jetten MS
    BMC Microbiol; 2013 Nov; 13():265. PubMed ID: 24267221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of a functional, contracted heme-binding motif within a multiheme cytochrome.
    Ferousi C; Lindhoud S; Baymann F; Hester ER; Reimann J; Kartal B
    J Biol Chem; 2019 Nov; 294(45):16953-16965. PubMed ID: 31582564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A heterodimeric cytochrome c complex with a very low redox potential from an anaerobic ammonium-oxidizing enrichment culture.
    Ukita S; Fujii T; Hira D; Nishiyama T; Kawase T; Migita CT; Furukawa K
    FEMS Microbiol Lett; 2010 Dec; 313(1):61-7. PubMed ID: 20883501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique hexameric structure of copper-containing nitrite reductase of an anammox bacterium KSU-1.
    Hira D; Matsumura M; Kitamura R; Furukawa K; Fujii T
    Biochem Biophys Res Commun; 2020 Jun; 526(3):654-660. PubMed ID: 32248970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR studies of the interaction between inner membrane-associated and periplasmic cytochromes from Geobacter sulfurreducens.
    Dantas JM; Brausemann A; Einsle O; Salgueiro CA
    FEBS Lett; 2017 Jun; 591(12):1657-1666. PubMed ID: 28542725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c.
    Gu J; Shin DW; Pletneva EV
    Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of heme based sensors from sediment organisms capable of extracellular electron transfer.
    Fonseca BM; Paquete CM; Louro RO
    J Inorg Biochem; 2014 Apr; 133():104-9. PubMed ID: 24268904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Structure of Dihydro-Heme d
    Klünemann T; Preuß A; Adamczack J; Rosa LFM; Harnisch F; Layer G; Blankenfeldt W
    J Mol Biol; 2019 Aug; 431(17):3246-3260. PubMed ID: 31173777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 60-heme reductase complex from an anammox bacterium shows an extended electron transfer pathway.
    Dietl A; Maalcke WJ; Ferousi C; Jetten MSM; Kartal B; Barends TRM
    Acta Crystallogr D Struct Biol; 2019 Mar; 75(Pt 3):333-341. PubMed ID: 30950404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of formate-dependent cytochrome c nitrite reductase, NrfA.
    Einsle O
    Methods Enzymol; 2011; 496():399-422. PubMed ID: 21514473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme.
    Williams PA; Fülöp V; Garman EF; Saunders NF; Ferguson SJ; Hajdu J
    Nature; 1997 Sep; 389(6649):406-12. PubMed ID: 9311786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c.
    Sun Y; Benabbas A; Zeng W; Kleingardner JG; Bren KL; Champion PM
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6570-5. PubMed ID: 24753591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DsrJ, an essential part of the DsrMKJOP transmembrane complex in the purple sulfur bacterium Allochromatium vinosum, is an unusual triheme cytochrome c.
    Grein F; Venceslau SS; Schneider L; Hildebrandt P; Todorovic S; Pereira IA; Dahl C
    Biochemistry; 2010 Sep; 49(38):8290-9. PubMed ID: 20726534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.