These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 29481955)

  • 41. Tethering a laminin peptide to a crosslinked collagen scaffold for biofunctionality.
    Damodaran G; Collighan R; Griffin M; Pandit A
    J Biomed Mater Res A; 2009 Jun; 89(4):1001-10. PubMed ID: 18478551
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Helical domain collagen substrates mineralization in simulated body fluid.
    Falini G; Fermani S; Palazzo B; Roveri N
    J Biomed Mater Res A; 2008 Nov; 87(2):470-6. PubMed ID: 18186062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and characterization of two new composites: collagen-brushite and collagen octa-calcium phosphate.
    Jayaraman M; Subramanian MV
    Med Sci Monit; 2002 Nov; 8(11):BR481-7. PubMed ID: 12444373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique.
    Manjubala I; Scheler S; Bössert J; Jandt KD
    Acta Biomater; 2006 Jan; 2(1):75-84. PubMed ID: 16701861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomimetic mineralization of partially bioresorbable glass fiber reinforced composite.
    Väkiparta M; Forsback AP; Lassila LV; Jokinen M; Yli-Urpo AU; Vallittu PK
    J Mater Sci Mater Med; 2005 Sep; 16(9):873-9. PubMed ID: 16167117
    [TBL] [Abstract][Full Text] [Related]  

  • 46. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple-helix nanofibril mineralization.
    Simon P; Grüner D; Worch H; Pompe W; Lichte H; El Khassawna T; Heiss C; Wenisch S; Kniep R
    Sci Rep; 2018 Sep; 8(1):13696. PubMed ID: 30209287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retinoic acid induces rapid mineralization and expression of mineralization-related genes in chondrocytes.
    Iwamoto M; Shapiro IM; Yagami K; Boskey AL; Leboy PS; Adams SL; Pacifici M
    Exp Cell Res; 1993 Aug; 207(2):413-20. PubMed ID: 8344389
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two forms of apatite deposited during mineralization of the hen tendon.
    Ono T; Nemoto TK
    Matrix Biol; 2005 May; 24(3):239-44. PubMed ID: 15922911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites.
    Guo DG; Wang AH; Han Y; Xu KW
    Acta Biomater; 2009 Nov; 5(9):3512-23. PubMed ID: 19477306
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Apatite-coated collagen scaffold for bone morphogenetic protein-2 delivery.
    Yang HS; La WG; Bhang SH; Lee TJ; Lee M; Kim BS
    Tissue Eng Part A; 2011 Sep; 17(17-18):2153-64. PubMed ID: 21529263
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degree of orientations of collagen fibers and bone apatite crystals in rat femora by infrared dichroism imaging.
    Ito T; Kimura-Suda H
    J Oral Biosci; 2019 Jun; 61(2):115-119. PubMed ID: 31109868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process.
    Olszta MJ; Douglas EP; Gower LB
    Calcif Tissue Int; 2003 May; 72(5):583-91. PubMed ID: 12616327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase.
    Wu X; Liu Y; Liu A; Wang W
    Int J Biol Macromol; 2017 May; 98():292-301. PubMed ID: 28163130
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation.
    Pekounov Y; Petrov OE
    J Mater Sci Mater Med; 2008 Feb; 19(2):753-9. PubMed ID: 17619976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlations on the Structure and Properties of Collagen Hydrogels Produced by E-Beam Crosslinking.
    Demeter M; Călina I; Scărișoreanu A; Micutz M; Kaya MA
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins.
    Wu S; Gu L; Huang Z; Sun Q; Chen H; Ling J; Mai S
    Eur J Oral Sci; 2017 Feb; 125(1):72-80. PubMed ID: 27996182
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mineralization-inhibiting effects of transglutaminase-crosslinked polymeric osteopontin.
    Hoac B; Nelea V; Jiang W; Kaartinen MT; McKee MD
    Bone; 2017 Aug; 101():37-48. PubMed ID: 28428079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite.
    Thomas V; Dean DR; Jose MV; Mathew B; Chowdhury S; Vohra YK
    Biomacromolecules; 2007 Feb; 8(2):631-7. PubMed ID: 17256900
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photodynamically crosslinked and chitosan-incorporated dentin collagen.
    Shrestha A; Friedman S; Kishen A
    J Dent Res; 2011 Nov; 90(11):1346-51. PubMed ID: 21911787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.