These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29482569)

  • 1. Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer.
    Yu H; Long W; Zhang X; Xu K; Guo J; Zhao H; Li H; Qing Y; Pan W; Jia B; Zhao HY; Huang X; Wei HJ
    J Transl Med; 2018 Feb; 16(1):41. PubMed ID: 29482569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer.
    Shen Y; Xu K; Yuan Z; Guo J; Zhao H; Zhang X; Zhao L; Qing Y; Li H; Pan W; Jia B; Zhao HY; Wei HJ
    J Transl Med; 2017 Nov; 15(1):224. PubMed ID: 29100547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology.
    Yin Y; Hao H; Xu X; Shen L; Wu W; Zhang J; Li Q
    Lipids Health Dis; 2019 May; 18(1):122. PubMed ID: 31138220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a miniature pig disease model for human Laron syndrome.
    Cui D; Li F; Li Q; Li J; Zhao Y; Hu X; Zhang R; Li N
    Sci Rep; 2015 Oct; 5():15603. PubMed ID: 26511035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient generation of GGTA1-null Diannan miniature pigs using TALENs combined with somatic cell nuclear transfer.
    Cheng W; Zhao H; Yu H; Xin J; Wang J; Zeng L; Yuan Z; Qing Y; Li H; Jia B; Yang C; Shen Y; Zhao L; Pan W; Zhao HY; Wang W; Wei HJ
    Reprod Biol Endocrinol; 2016 Nov; 14(1):77. PubMed ID: 27821126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver.
    Hinrichs A; Kessler B; Kurome M; Blutke A; Kemter E; Bernau M; Scholz AM; Rathkolb B; Renner S; Bultmann S; Leonhardt H; de Angelis MH; Nagashima H; Hoeflich A; Blum WF; Bidlingmaier M; Wanke R; Dahlhoff M; Wolf E
    Mol Metab; 2018 May; 11():113-128. PubMed ID: 29678421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GHR-mutant pig derived from domestic pig and microminipig hybrid zygotes using CRISPR/Cas9 system.
    Tanihara F; Hirata M; Namula Z; Wittayarat M; Do LTK; Lin Q; Takebayashi K; Hara H; Nagahara M; Otoi T
    Mol Biol Rep; 2023 Jun; 50(6):5049-5057. PubMed ID: 37101010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.
    Zhou X; Xin J; Fan N; Zou Q; Huang J; Ouyang Z; Zhao Y; Zhao B; Liu Z; Lai S; Yi X; Guo L; Esteban MA; Zeng Y; Yang H; Lai L
    Cell Mol Life Sci; 2015 Mar; 72(6):1175-84. PubMed ID: 25274063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of GTKO Diannan Miniature Pig Expressing Human Complementary Regulator Proteins hCD55 and hCD59 via T2A Peptide-Based Bicistronic Vectors and SCNT.
    Liu F; Liu J; Yuan Z; Qing Y; Li H; Xu K; Zhu W; Zhao H; Jia B; Pan W; Guo J; Zhang X; Cheng W; Wang W; Zhao HY; Wei HJ
    Mol Biotechnol; 2018 Aug; 60(8):550-562. PubMed ID: 29916131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection.
    Li P; Estrada JL; Burlak C; Montgomery J; Butler JR; Santos RM; Wang ZY; Paris LL; Blankenship RL; Downey SM; Tector M; Tector AJ
    Xenotransplantation; 2015; 22(1):20-31. PubMed ID: 25178170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System.
    Wang K; Ouyang H; Xie Z; Yao C; Guo N; Li M; Jiao H; Pang D
    Sci Rep; 2015 Nov; 5():16623. PubMed ID: 26564781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transgenic Wuzhishan minipigs designed to express a dominant-negative porcine growth hormone receptor display small stature and a perturbed insulin/IGF-1 pathway.
    Li F; Li Y; Liu H; Zhang X; Liu C; Tian K; Bolund L; Dou H; Yang W; Yang H; Staunstrup NH; Du Y
    Transgenic Res; 2015 Dec; 24(6):1029-42. PubMed ID: 26510874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient generation of GHR knockout Bama minipig fibroblast cells using CRISPR/Cas9-mediated gene editing.
    Wang R; Zhang JY; Lu KH; Lu SS; Zhu XX
    In Vitro Cell Dev Biol Anim; 2019 Dec; 55(10):784-792. PubMed ID: 31456163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.
    Gao H; Zhao C; Xiang X; Li Y; Zhao Y; Li Z; Pan D; Dai Y; Hara H; Cooper DK; Cai Z; Mou L
    J Reprod Dev; 2017 Feb; 63(1):17-26. PubMed ID: 27725344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor.
    Wu Y; Sun H; Basta-Pljakic J; Cardoso L; Kennedy OD; Jasper H; Domené H; Karabatas L; Guida C; Schaffler MB; Rosen CJ; Yakar S
    J Bone Miner Res; 2013 Jul; 28(7):1575-86. PubMed ID: 23456957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of GHR Deficiency and Juvenile Hypoglycemia on Immune Cells of a Porcine Model for Laron Syndrome.
    Schilloks MC; Giese IM; Hinrichs A; Korbonits L; Hauck SM; Wolf E; Deeg CA
    Biomolecules; 2023 Mar; 13(4):. PubMed ID: 37189345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system.
    Cho B; Kim SJ; Lee EJ; Ahn SM; Lee JS; Ji DY; Lee K; Kang JT
    Transgenic Res; 2018 Jun; 27(3):289-300. PubMed ID: 29691708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure to maintain full-term pregnancies in pig carrying klotho monoallelic knockout fetuses.
    Lee S; Jung MH; Song K; Jin JX; Taweechaipaisankul A; Kim GA; Oh HJ; Koo OJ; Park SC; Lee BC
    BMC Biotechnol; 2021 Jan; 21(1):1. PubMed ID: 33413301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes.
    Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H
    Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs.
    Hirata M; Wittayarat M; Tanihara F; Sato Y; Namula Z; Le QA; Lin Q; Takebayashi K; Otoi T
    In Vitro Cell Dev Biol Anim; 2020 Sep; 56(8):614-621. PubMed ID: 32978715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.