BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29483188)

  • 1. A step-by-step
    Williams AH; Wheeler R; Rateau L; Malosse C; Chamot-Rooke J; Haouz A; Taha MK; Boneca IG
    J Biol Chem; 2018 Apr; 293(16):6000-6010. PubMed ID: 29483188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan.
    van Asselt EJ; Kalk KH; Dijkstra BW
    Biochemistry; 2000 Feb; 39(8):1924-34. PubMed ID: 10684641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de-
    Williams AH; Wheeler R; Deghmane AE; Santecchia I; Schaub RE; Hicham S; Moya Nilges M; Malosse C; Chamot-Rooke J; Haouz A; Dillard JP; Robins WP; Taha MK; Gomperts Boneca I
    Elife; 2020 Feb; 9():. PubMed ID: 32022687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli.
    Fibriansah G; Gliubich FI; Thunnissen AM
    Biochemistry; 2012 Nov; 51(45):9164-77. PubMed ID: 23075328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand.
    van Asselt EJ; Dijkstra AJ; Kalk KH; Takacs B; Keck W; Dijkstra BW
    Structure; 1999 Oct; 7(10):1167-80. PubMed ID: 10545329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment.
    van Asselt EJ; Thunnissen AM; Dijkstra BW
    J Mol Biol; 1999 Aug; 291(4):877-98. PubMed ID: 10452894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neisseria gonorrhoeae Lytic Transglycosylases LtgA and LtgD Reduce Host Innate Immune Signaling through TLR2 and NOD2.
    Knilans KJ; Hackett KT; Anderson JE; Weng C; Dillard JP; Duncan JA
    ACS Infect Dis; 2017 Sep; 3(9):624-633. PubMed ID: 28585815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function relationships underlying the dual
    Grifoll-Romero L; Sainz-Polo MA; Albesa-Jové D; Guerin ME; Biarnés X; Planas A
    J Biol Chem; 2019 Dec; 294(50):19066-19080. PubMed ID: 31690626
    [No Abstract]   [Full Text] [Related]  

  • 9. Substrate binding affinity of Pseudomonas aeruginosa membrane-bound lytic transglycosylase B by hydrogen-deuterium exchange MALDI MS.
    Reid CW; Brewer D; Clarke AJ
    Biochemistry; 2004 Sep; 43(35):11275-82. PubMed ID: 15366937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lytic transglycosylases.
    Höltje JV
    EXS; 1996; 75():425-9. PubMed ID: 8765311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of Pseudomonas aeruginosa.
    Lee M; Domínguez-Gil T; Hesek D; Mahasenan KV; Lastochkin E; Hermoso JA; Mobashery S
    ACS Chem Biol; 2016 Jun; 11(6):1525-31. PubMed ID: 27035839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of the lytic transglycosylase MltA from N.gonorrhoeae and E.coli: insights into interdomain movements and substrate binding.
    Powell AJ; Liu ZJ; Nicholas RA; Davies C
    J Mol Biol; 2006 May; 359(1):122-36. PubMed ID: 16618494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neisseria gonorrhoeae uses two lytic transglycosylases to produce cytotoxic peptidoglycan monomers.
    Cloud-Hansen KA; Hackett KT; Garcia DL; Dillard JP
    J Bacteriol; 2008 Sep; 190(17):5989-94. PubMed ID: 18567658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG.
    Mayer VMT; Tomek MB; Figl R; Borisova M; Hottmann I; Blaukopf M; Altmann F; Mayer C; Schäffer C
    BMC Microbiol; 2020 Nov; 20(1):352. PubMed ID: 33203363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of arginine residues in the active site of the membrane-bound lytic transglycosylase B from Pseudomonas aeruginosa.
    Reid CW; Blackburn NT; Clarke AJ
    Biochemistry; 2006 Feb; 45(7):2129-38. PubMed ID: 16475802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the catalytic domain of the Bacillus cereus SleB protein, important in cortex peptidoglycan degradation during spore germination.
    Li Y; Jin K; Setlow B; Setlow P; Hao B
    J Bacteriol; 2012 Sep; 194(17):4537-45. PubMed ID: 22730118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases.
    Müller M; Calvert M; Hottmann I; Kluj RM; Teufel T; Balbuchta K; Engelbrecht A; Selim KA; Xu Q; Borisova M; Titz A; Mayer C
    J Biol Chem; 2021; 296():100519. PubMed ID: 33684445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Ser216 in the mechanism of action of membrane-bound lytic transglycosylase B: further evidence for substrate-assisted catalysis.
    Reid CW; Legaree BA; Clarke AJ
    FEBS Lett; 2007 Oct; 581(25):4988-92. PubMed ID: 17910958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of 1,6-anhydro bond cleavage and phosphoryl transfer by Pseudomonas aeruginosa 1,6-anhydro-N-acetylmuramic acid kinase.
    Bacik JP; Whitworth GE; Stubbs KA; Yadav AK; Martin DR; Bailey-Elkin BA; Vocadlo DJ; Mark BL
    J Biol Chem; 2011 Apr; 286(14):12283-91. PubMed ID: 21288904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The catalytic domain of a bacterial lytic transglycosylase defines a novel class of lysozymes.
    Thunnissen AM; Isaacs NW; Dijkstra BW
    Proteins; 1995 Jul; 22(3):245-58. PubMed ID: 7479697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.