BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29483271)

  • 1. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity.
    Al-Rekabi Z; Contera S
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2658-2663. PubMed ID: 29483271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study.
    Redondo-Morata L; Giannotti MI; Sanz F
    Langmuir; 2012 Sep; 28(35):12851-60. PubMed ID: 22873775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane.
    Khadka NK; Mortimer MF; Marosvari M; Timsina R; Mainali L
    Exp Eye Res; 2022 Jul; 220():109131. PubMed ID: 35636489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of the high cholesterol-containing membrane: An AFM study.
    Khadka NK; Timsina R; Rowe E; O'Dell M; Mainali L
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183625. PubMed ID: 33891910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of galactosylceramides on the nanomechanical properties of lipid bilayer models: an AFM-force spectroscopy study.
    Gumí-Audenis B; Sanz F; Giannotti MI
    Soft Matter; 2015 Jul; 11(27):5447-54. PubMed ID: 26058499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic deformation and failure of lipid bilayer membranes containing cholesterol.
    Needham D; Nunn RS
    Biophys J; 1990 Oct; 58(4):997-1009. PubMed ID: 2249000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers.
    Park S; Im W
    J Chem Theory Comput; 2018 Jun; 14(6):2829-2833. PubMed ID: 29733641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of intra-membrane C60 fullerenes on the modulus of elasticity and the mechanical resistance of gel and fluid lipid bilayers.
    Zhou J; Liang D; Contera S
    Nanoscale; 2015 Oct; 7(40):17102-8. PubMed ID: 26420659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using micropatterned lipid bilayer arrays to measure the effect of membrane composition on merocyanine 540 binding.
    Smith KA; Conboy JC
    Biochim Biophys Acta; 2011 Jun; 1808(6):1611-7. PubMed ID: 21376014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid.
    Asakawa H; Fukuma T
    Nanotechnology; 2009 Jul; 20(26):264008. PubMed ID: 19509439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy.
    Aryal CM; Pan J
    Eur Biophys J; 2024 Feb; 53(1-2):57-67. PubMed ID: 38172352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFM nanoindentation reveals decrease of elastic modulus of lipid bilayers near freezing point of water.
    Gabbutt C; Shen W; Seifert J; Contera S
    Sci Rep; 2019 Dec; 9(1):19473. PubMed ID: 31857622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane domain modulation of Aβ
    Azouz M; Cullin C; Lecomte S; Lafleur M
    Nanoscale; 2019 Nov; 11(43):20857-20867. PubMed ID: 31657431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol.
    González-Ramírez EJ; Artetxe I; García-Arribas AB; Goñi FM; Alonso A
    Langmuir; 2019 Apr; 35(15):5305-5315. PubMed ID: 30924341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology, compressibility and viscoelasticity of the mixed lipid monolayers in the presence of β-carotene.
    Dopierała K; Skrzypiec M
    Chem Phys Lipids; 2018 Jul; 213():88-95. PubMed ID: 29626417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.
    Unsay JD; Cosentino K; García-Sáez AJ
    J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions.
    Dols-Perez A; Fumagalli L; Gomila G
    Colloids Surf B Biointerfaces; 2014 Apr; 116():295-302. PubMed ID: 24508809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol induced asymmetry in DOPC bilayers probed by AFM force spectroscopy.
    Adhyapak PR; Panchal SV; Murthy AVR
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):953-959. PubMed ID: 29408513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.