These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29483292)

  • 21. Fractionation of the Coxiella burnetii parasitophorous vacuole.
    Howe D; Heinzen RA
    Methods Mol Biol; 2008; 445():389-406. PubMed ID: 18425464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii.
    Kohler LJ; Roy CR
    Microbes Infect; 2015; 17(11-12):766-71. PubMed ID: 26327296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated Cholesterol in the
    Mulye M; Samanta D; Winfree S; Heinzen RA; Gilk SD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28246364
    [No Abstract]   [Full Text] [Related]  

  • 24. Partial impairment of late-stage autophagic flux in murine splenocytes leads to sqstm1/p62 mediated nrf2-keap1 antioxidant pathway activation and induced proteasome-mediated degradation in malaria.
    Sengupta A; Mukherjee S; Ghosh S; Keswani T; Sarkar S; Majumdar G; Das M; Bhattacharyya A
    Microb Pathog; 2020 Oct; 147():104289. PubMed ID: 32693118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Host Kinase Activity is Required for Coxiella burnetii Parasitophorous Vacuole Formation.
    Hussain SK; Broederdorf LJ; Sharma UM; Voth DE
    Front Microbiol; 2010; 1():137. PubMed ID: 21772829
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coxiella burnetii exploits host cAMP-dependent protein kinase signalling to promote macrophage survival.
    Macdonald LJ; Graham JG; Kurten RC; Voth DE
    Cell Microbiol; 2014 Jan; 16(1):146-59. PubMed ID: 24028560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection.
    Ganesan S; Alvarez NN; Steiner S; Fowler KM; Corona AK; Roy CR
    mBio; 2023 Feb; 14(1):e0354522. PubMed ID: 36728431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Defying Death - How
    Cordsmeier A; Wagner N; Lührmann A; Berens C
    Yale J Biol Med; 2019 Dec; 92(4):619-628. PubMed ID: 31866777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages.
    Beare PA; Gilk SD; Larson CL; Hill J; Stead CM; Omsland A; Cockrell DC; Howe D; Voth DE; Heinzen RA
    mBio; 2011; 2(4):e00175-11. PubMed ID: 21862628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.
    Newton HJ; McDonough JA; Roy CR
    PLoS One; 2013; 8(1):e54566. PubMed ID: 23349930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Severe Fever with Thrombocytopenia Syndrome Virus NSs Interacts with TRIM21 To Activate the p62-Keap1-Nrf2 Pathway.
    Choi Y; Jiang Z; Shin WJ; Jung JU
    J Virol; 2020 Feb; 94(6):. PubMed ID: 31852783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toll-Like Receptor Signaling Induces Nrf2 Pathway Activation through p62-Triggered Keap1 Degradation.
    Yin S; Cao W
    Mol Cell Biol; 2015 Aug; 35(15):2673-83. PubMed ID: 26012548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages.
    Clemente TM; Mulye M; Justis AV; Nallandhighal S; Tran TM; Gilk SD
    Infect Immun; 2018 Oct; 86(10):. PubMed ID: 30061378
    [No Abstract]   [Full Text] [Related]  

  • 34. Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole.
    Kohler LJ; Reed ShC; Sarraf SA; Arteaga DD; Newton HJ; Roy CR
    mBio; 2016 Jul; 7(4):. PubMed ID: 27435465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Negative Regulation of the Keap1-Nrf2 Pathway by a p62/Sqstm1 Splicing Variant.
    Kageyama S; Saito T; Obata M; Koide RH; Ichimura Y; Komatsu M
    Mol Cell Biol; 2018 Apr; 38(7):. PubMed ID: 29339380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Host and Bacterial Factors Control Susceptibility of Drosophila melanogaster to Coxiella burnetii Infection.
    Bastos RG; Howard ZP; Hiroyasu A; Goodman AG
    Infect Immun; 2017 Jul; 85(7):. PubMed ID: 28438980
    [No Abstract]   [Full Text] [Related]  

  • 37. HCV-induced oxidative stress by inhibition of Nrf2 triggers autophagy and favors release of viral particles.
    Medvedev R; Ploen D; Spengler C; Elgner F; Ren H; Bunten S; Hildt E
    Free Radic Biol Med; 2017 Sep; 110():300-315. PubMed ID: 28673615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NBR1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system.
    Sánchez-Martín P; Sou YS; Kageyama S; Koike M; Waguri S; Komatsu M
    EMBO Rep; 2020 Mar; 21(3):e48902. PubMed ID: 31916398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: Involvement of autophagy and p21/Nrf2 axis.
    Tilija Pun N; Park PH
    Sci Rep; 2017 Mar; 7(1):393. PubMed ID: 28341848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription.
    Jain A; Lamark T; Sjøttem E; Larsen KB; Awuh JA; Øvervatn A; McMahon M; Hayes JD; Johansen T
    J Biol Chem; 2010 Jul; 285(29):22576-91. PubMed ID: 20452972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.