BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 29483295)

  • 1. A novel rhodopsin phosphodiesterase from
    Tian Y; Gao S; Yang S; Nagel G
    Biochem J; 2018 Mar; 475(6):1121-1128. PubMed ID: 29483295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates.
    Tian Y; Yang S; Nagel G; Gao S
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into the mechanism of rhodopsin phosphodiesterase.
    Ikuta T; Shihoya W; Sugiura M; Yoshida K; Watari M; Tokano T; Yamashita K; Katayama K; Tsunoda SP; Uchihashi T; Kandori H; Nureki O
    Nat Commun; 2020 Nov; 11(1):5605. PubMed ID: 33154353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate Salpingoeca rosetta.
    Lamarche LB; Kumar RP; Trieu MM; Devine EL; Cohen-Abeles LE; Theobald DL; Oprian DD
    Biochemistry; 2017 Oct; 56(43):5812-5822. PubMed ID: 28976747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic study of the transmembrane domain of a rhodopsin-phosphodiesterase fusion protein from a unicellular eukaryote.
    Watari M; Ikuta T; Yamada D; Shihoya W; Yoshida K; Tsunoda SP; Nureki O; Kandori H
    J Biol Chem; 2019 Mar; 294(10):3432-3443. PubMed ID: 30622140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins.
    Tian Y; Gao S; Nagel G
    Methods Mol Biol; 2022; 2501():325-338. PubMed ID: 35857236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity.
    Yoshida K; Tsunoda SP; Brown LS; Kandori H
    J Biol Chem; 2017 May; 292(18):7531-7541. PubMed ID: 28302718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.
    Gao S; Nagpal J; Schneider MW; Kozjak-Pavlovic V; Nagel G; Gottschalk A
    Nat Commun; 2015 Sep; 6():8046. PubMed ID: 26345128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications.
    Tian Y; Yang S; Gao S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.
    Chen CK; Woodruff ML; Fain GL
    J Gen Physiol; 2015 Mar; 145(3):213-24. PubMed ID: 25667411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Properties of New Enzyme Rhodopsins with Phosphodiesterase Activity.
    Sugiura M; Tsunoda SP; Hibi M; Kandori H
    ACS Omega; 2020 May; 5(18):10602-10609. PubMed ID: 32426619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphodiesterases in the central nervous system.
    Kleppisch T
    Handb Exp Pharmacol; 2009; (191):71-92. PubMed ID: 19089326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of phosphodiesterase in regulation of calcium current in isolated cardiac myocytes.
    Simmons MA; Hartzell HC
    Mol Pharmacol; 1988 Jun; 33(6):664-71. PubMed ID: 2454387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-driven ion-translocating rhodopsins in marine bacteria.
    Inoue K; Kato Y; Kandori H
    Trends Microbiol; 2015 Feb; 23(2):91-8. PubMed ID: 25432080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [cGMP-activated phosphodiesterase from human brain: kinetic and regulatory properties].
    Bobruskin ID; Medvedeva MV; Severin ES
    Biokhimiia; 1991 Jun; 56(6):999-1010. PubMed ID: 1657216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The properties of phosphodiesterase 11A4 GAF domains are regulated by modifications in its N-terminal domain.
    Gross-Langenhoff M; Stenzl A; Altenberend F; Schultz A; Schultz JE
    FEBS J; 2008 Apr; 275(8):1643-50. PubMed ID: 18312413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
    Scheib U; Stehfest K; Gee CE; Körschen HG; Fudim R; Oertner TG; Hegemann P
    Sci Signal; 2015 Aug; 8(389):rs8. PubMed ID: 26268609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDE2 at the crossway between cAMP and cGMP signalling in the heart.
    Weber S; Zeller M; Guan K; Wunder F; Wagner M; El-Armouche A
    Cell Signal; 2017 Oct; 38():76-84. PubMed ID: 28668721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.