These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 29483684)
1. An apoplastic peptide activates salicylic acid signalling in maize. Ziemann S; van der Linde K; Lahrmann U; Acar B; Kaschani F; Colby T; Kaiser M; Ding Y; Schmelz E; Huffaker A; Holton N; Zipfel C; Doehlemann G Nat Plants; 2018 Mar; 4(3):172-180. PubMed ID: 29483684 [TBL] [Abstract][Full Text] [Related]
2. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Rabe F; Ajami-Rashidi Z; Doehlemann G; Kahmann R; Djamei A Mol Microbiol; 2013 Jul; 89(1):179-88. PubMed ID: 23692401 [TBL] [Abstract][Full Text] [Related]
3. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. van der Linde K; Hemetsberger C; Kastner C; Kaschani F; van der Hoorn RA; Kumlehn J; Doehlemann G Plant Cell; 2012 Mar; 24(3):1285-300. PubMed ID: 22454455 [TBL] [Abstract][Full Text] [Related]
4. The maize cystatin CC9 interacts with apoplastic cysteine proteases. van der Linde K; Mueller AN; Hemetsberger C; Kashani F; van der Hoorn RA; Doehlemann G Plant Signal Behav; 2012 Nov; 7(11):1397-401. PubMed ID: 22960758 [TBL] [Abstract][Full Text] [Related]
5. Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1. Rabe F; Seitner D; Bauer L; Navarrete F; Czedik-Eysenberg A; Rabanal FA; Djamei A Mol Microbiol; 2016 Oct; 102(2):290-305. PubMed ID: 27387604 [TBL] [Abstract][Full Text] [Related]
7. Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores. Oka K; Amano Y; Katou S; Seo S; Kawazu K; Mochizuki A; Kuchitsu K; Mitsuhara I Mol Plant Microbe Interact; 2013 Jun; 26(6):668-75. PubMed ID: 23425101 [TBL] [Abstract][Full Text] [Related]
8. The nexus between growth and defence signalling: auxin and cytokinin modulate plant immune response pathways. Naseem M; Kaltdorf M; Dandekar T J Exp Bot; 2015 Aug; 66(16):4885-96. PubMed ID: 26109575 [TBL] [Abstract][Full Text] [Related]
9. Papain-like cysteine proteases as hubs in plant immunity. Misas-Villamil JC; van der Hoorn RA; Doehlemann G New Phytol; 2016 Dec; 212(4):902-907. PubMed ID: 27488095 [TBL] [Abstract][Full Text] [Related]
10. Light acclimation, retrograde signalling, cell death and immune defences in plants. Karpiński S; Szechyńska-Hebda M; Wituszyńska W; Burdiak P Plant Cell Environ; 2013 Apr; 36(4):736-44. PubMed ID: 23046215 [TBL] [Abstract][Full Text] [Related]
11. Proteases Underground: Analysis of the Maize Root Apoplast Identifies Organ Specific Papain-Like Cysteine Protease Activity. Schulze Hüynck J; Kaschani F; van der Linde K; Ziemann S; Müller AN; Colby T; Kaiser M; Misas Villamil JC; Doehlemann G Front Plant Sci; 2019; 10():473. PubMed ID: 31114592 [TBL] [Abstract][Full Text] [Related]
12. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. Roychowdhury R; Mishra S; Anand G; Dalal D; Gupta R; Kumar A; Gupta R Physiol Plant; 2024; 176(3):e14399. PubMed ID: 38894599 [TBL] [Abstract][Full Text] [Related]
13. Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. Pokotylo I; Kravets V; Ruelland E Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31489905 [TBL] [Abstract][Full Text] [Related]
14. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Shen X; Liu H; Yuan B; Li X; Xu C; Wang S Plant Cell Environ; 2011 Feb; 34(2):179-91. PubMed ID: 20807375 [TBL] [Abstract][Full Text] [Related]
15. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Zeier J; Pink B; Mueller MJ; Berger S Planta; 2004 Aug; 219(4):673-83. PubMed ID: 15098125 [TBL] [Abstract][Full Text] [Related]
16. Salicylic acid in plant immunity and beyond. Spoel SH; Dong X Plant Cell; 2024 May; 36(5):1451-1464. PubMed ID: 38163634 [TBL] [Abstract][Full Text] [Related]
17. Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence. Li Y; Chang Y; Zhao C; Yang H; Ren D J Integr Plant Biol; 2016 Aug; 58(8):724-36. PubMed ID: 26822341 [TBL] [Abstract][Full Text] [Related]
18. A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Misas Villamil JC; Mueller AN; Demir F; Meyer U; Ökmen B; Schulze Hüynck J; Breuer M; Dauben H; Win J; Huesgen PF; Doehlemann G Nat Commun; 2019 Apr; 10(1):1576. PubMed ID: 30952847 [TBL] [Abstract][Full Text] [Related]
19. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. Matić S; Bagnaresi P; Biselli C; Orru' L; Amaral Carneiro G; Siciliano I; Valé G; Gullino ML; Spadaro D BMC Genomics; 2016 Aug; 17(1):608. PubMed ID: 27515776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]