These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29483813)

  • 1. Comparison of Floaters after Cataract Surgery with Different Viscoelastics.
    Kim J; Lee HJ; Park IW; Kwon SI
    Int J Med Sci; 2018; 15(3):223-227. PubMed ID: 29483813
    [No Abstract]   [Full Text] [Related]  

  • 2. Thickness of the Protective Layers of Different Ophthalmic Viscosurgical Devices During Lens Surgery in a Porcine Model.
    Wüst M; Matten P; Nenning M; Findl O
    Transl Vis Sci Technol; 2022 Feb; 11(2):28. PubMed ID: 35175318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraoperative Evaluation of Phacoemulsification Cataract Surgery with and without the Use of Ophthalmic Viscosurgical Devices.
    Joshi RS; Naik SR
    Middle East Afr J Ophthalmol; 2020; 27(1):47-52. PubMed ID: 32549724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention and removal of a new viscous dispersive ophthalmic viscosurgical device during cataract surgery in animal eyes.
    Oshika T; Okamoto F; Kaji Y; Hiraoka T; Kiuchi T; Sato M; Kawana K
    Br J Ophthalmol; 2006 Apr; 90(4):485-7. PubMed ID: 16547332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the effect of Viscoat and DuoVisc on postoperative intraocular pressure after small-incision cataract surgery.
    Rainer G; Stifter E; Luksch A; Menapace R
    J Cataract Refract Surg; 2008 Feb; 34(2):253-7. PubMed ID: 18242449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro behavior of ophthalmic viscosurgical devices during phacoemulsification.
    Bissen-Miyajima H
    J Cataract Refract Surg; 2006 Jun; 32(6):1026-31. PubMed ID: 16814065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of intraoperative complications in intumescent cataract surgery using 2 ophthalmic viscosurgical devices and trypan blue staining.
    Hengerer FH; Dick HB; Kohnen T; Conrad-Hengerer I
    J Cataract Refract Surg; 2015 Apr; 41(4):714-8. PubMed ID: 25840295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phacoemulsification with versus without viscoelastic devices on surgical outcomes.
    Taşkın İ; Aslan L
    Int Ophthalmol; 2018 Feb; 38(1):5-10. PubMed ID: 28488075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Flow out technique' for safe and complete removal of ophthalmic viscosurgical devices after phacoemulsification cataract surgery.
    Kreis AJ; Nguyen TT; Jhanji V; Vajpayee RB
    Eye Contact Lens; 2010 Nov; 36(6):356-7. PubMed ID: 21060259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological and Adhesive Properties to Identify Cohesive and Dispersive Ophthalmic Viscosurgical Devices.
    Watanabe I; Hoshi H; Sato M; Suzuki K
    Chem Pharm Bull (Tokyo); 2019; 67(3):277-283. PubMed ID: 30828005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices.
    Arshinoff SA; Wong E
    J Cataract Refract Surg; 2003 Dec; 29(12):2318-23. PubMed ID: 14709292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phacoemulsification with hydrodelineation and OVD-assisted hydrodissection in posterior polar cataract.
    Hua X; Dong Y; Du J; Yang J; Yuan X
    BMC Ophthalmol; 2018 Jul; 18(1):165. PubMed ID: 29986674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel "Slit Side View" Method to Evaluate Fluid Dynamics during Phacoemulsification.
    Suzuki H; Igarashi T; Shiwa T; Takahashi H
    J Ophthalmol; 2018; 2018():5027238. PubMed ID: 30363725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of viscoelastic substances on the corneal endothelial cell population during cataract surgery: a prospective study of cohesive and dispersive viscoelastics.
    Storr-Paulsen A; Nørregaard JC; Farik G; Tårnhøj J
    Acta Ophthalmol Scand; 2007 Mar; 85(2):183-7. PubMed ID: 17305732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survey of ophthalmic viscosurgical devices.
    Tognetto D; Cecchini P; Ravalico G
    Curr Opin Ophthalmol; 2004 Feb; 15(1):29-32. PubMed ID: 14743016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preclinical Safety Evaluation of Ophthalmic Viscosurgical Devices in Rabbits and a Novel Mini-Pig Model.
    Leang RS; Kloft LJ; Gray B; Gwon AE; Huang LC
    Ophthalmol Ther; 2019 Mar; 8(1):101-114. PubMed ID: 30778776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A primer on ocular viscosurgical devices.
    Gerberich AJ; Ipema HJ
    Am J Health Syst Pharm; 2021 Nov; 78(22):2020-2032. PubMed ID: 34050732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersive viscosurgical devices demonstrate greater efficacy in protecting corneal endothelium in vitro.
    Yildirim TM; Auffarth GU; Son HS; Khoramnia R; Munro DJ; Merz PR
    BMJ Open Ophthalmol; 2019; 4(1):e000227. PubMed ID: 30997401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation of Rheological Properties of Cohesive Ophthalmic Viscosurgical Devices Composed of Sodium Hyaluronate with High Molecular Weight-2019].
    Watanabe I; Mirumachi H; Konno H; Suzuki K
    Yakugaku Zasshi; 2019; 139(8):1121-1128. PubMed ID: 31366849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed polymeric systems: New ophthalmic viscosurgical device created by mixing commercially available devices.
    Tognetto D; Cecchini P; D'Aloisio R; Lapasin R
    J Cataract Refract Surg; 2017 Jan; 43(1):109-114. PubMed ID: 28317663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.