These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 29483817)
1. Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Sun M; Chi G; Li P; Lv S; Xu J; Xu Z; Xia Y; Tan Y; Xu J; Li L; Li Y Int J Med Sci; 2018; 15(3):257-268. PubMed ID: 29483817 [TBL] [Abstract][Full Text] [Related]
2. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
3. Effect of matrix stiffness on the proliferation and differentiation of umbilical cord mesenchymal stem cells. Xu J; Sun M; Tan Y; Wang H; Wang H; Li P; Xu Z; Xia Y; Li L; Li Y Differentiation; 2017; 96():30-39. PubMed ID: 28753444 [TBL] [Abstract][Full Text] [Related]
4. Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Hsieh WT; Liu YS; Lee YH; Rimando MG; Lin KH; Lee OK Acta Biomater; 2016 Mar; 32():210-222. PubMed ID: 26790775 [TBL] [Abstract][Full Text] [Related]
5. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Her GJ; Wu HC; Chen MH; Chen MY; Chang SC; Wang TW Acta Biomater; 2013 Feb; 9(2):5170-80. PubMed ID: 23079022 [TBL] [Abstract][Full Text] [Related]
6. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Sun M; Chi G; Xu J; Tan Y; Xu J; Lv S; Xu Z; Xia Y; Li L; Li Y Stem Cell Res Ther; 2018 Mar; 9(1):52. PubMed ID: 29490668 [TBL] [Abstract][Full Text] [Related]
7. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. Shih YR; Tseng KF; Lai HY; Lin CH; Lee OK J Bone Miner Res; 2011 Apr; 26(4):730-8. PubMed ID: 20939067 [TBL] [Abstract][Full Text] [Related]
8. Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells. Bae SE; Bhang SH; Kim BS; Park K Biomacromolecules; 2012 Sep; 13(9):2811-20. PubMed ID: 22813212 [TBL] [Abstract][Full Text] [Related]
9. Osteogenesis-Related Behavior of MC3T3-E1 Cells on Substrates with Tunable Stiffness. Zhang Y; Xing Y; Li J; Zhang Z; Luan H; Chu Z; Gong H; Fan Y Biomed Res Int; 2018; 2018():4025083. PubMed ID: 30515396 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel. Haeri SM; Sadeghi Y; Salehi M; Farahani RM; Mohsen N Biologicals; 2016 May; 44(3):123-8. PubMed ID: 27055599 [TBL] [Abstract][Full Text] [Related]
11. Interleukin-6 induces the lineage commitment of bone marrow-derived mesenchymal multipotent cells through down-regulation of Sox2 by osteogenic transcription factors. Yoon DS; Kim YH; Lee S; Lee KM; Park KH; Jang Y; Lee JW FASEB J; 2014 Jul; 28(7):3273-86. PubMed ID: 24719354 [TBL] [Abstract][Full Text] [Related]
12. Tailored environments for directed mesenchymal stromal cell proliferation and differentiation using decellularized extracellular matrices in conjunction with substrate modulus. Yang MC; Chin IL; Fang H; Drack A; Nour S; Choi YS; O'Connor AJ; Greening DW; Kalionis B; Heath DE Acta Biomater; 2024 Oct; 187():110-122. PubMed ID: 39181177 [TBL] [Abstract][Full Text] [Related]
13. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Rowlands AS; George PA; Cooper-White JJ Am J Physiol Cell Physiol; 2008 Oct; 295(4):C1037-44. PubMed ID: 18753317 [TBL] [Abstract][Full Text] [Related]
14. Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells. Dai Z; Shu Y; Wan C; Wu C J Biomater Appl; 2015 Apr; 29(9):1272-83. PubMed ID: 25361919 [TBL] [Abstract][Full Text] [Related]
15. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process. Wu H; Shang Y; Zhang J; Cheang LH; Zeng X; Tu M J Biomater Appl; 2017 Oct; 32(4):492-503. PubMed ID: 28992805 [TBL] [Abstract][Full Text] [Related]
16. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions. He XT; Wu RX; Xu XY; Wang J; Yin Y; Chen FM Acta Biomater; 2018 Apr; 71():132-147. PubMed ID: 29462712 [TBL] [Abstract][Full Text] [Related]
17. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro. Matsuzaki S; Canis M; Pouly JL; Darcha C Hum Reprod; 2016 Mar; 31(3):541-53. PubMed ID: 26762314 [TBL] [Abstract][Full Text] [Related]
18. Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfa1. Dong SW; Ying DJ; Duan XJ; Xie Z; Yu ZJ; Zhu CH; Yang B; Sun JS Biosci Biotechnol Biochem; 2009 Oct; 73(10):2226-33. PubMed ID: 19809195 [TBL] [Abstract][Full Text] [Related]
19. The effect of AKT in extracellular matrix stiffness induced osteogenic differentiation of hBMSCs. Shen Y; Jing D; Zhao Z Cell Signal; 2022 Nov; 99():110404. PubMed ID: 35835331 [TBL] [Abstract][Full Text] [Related]
20. Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro. Thrivikraman G; Lee PS; Hess R; Haenchen V; Basu B; Scharnweber D ACS Appl Mater Interfaces; 2015 Oct; 7(41):23015-28. PubMed ID: 26418613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]