These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29483902)

  • 1. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.
    Angell JH; Peng X; Ji Q; Craick I; Jayakumar A; Kearns PJ; Ward BB; Bowen JL
    Front Microbiol; 2018; 9():170. PubMed ID: 29483902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Fertilization Alters Nitrous Oxide Cycling Dynamics in Salt Marsh Sediments.
    Peng X; Ji Q; Angell JH; Kearns PJ; Bowen JL; Ward BB
    Environ Sci Technol; 2021 Aug; 55(15):10832-10842. PubMed ID: 34291904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
    Yang WH; Silver WL
    Glob Chang Biol; 2016 Jun; 22(6):2228-37. PubMed ID: 26718748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term nutrient addition increases respiration and nitrous oxide emissions in a New England salt marsh.
    Martin RM; Wigand C; Elmstrom E; Lloret J; Valiela I
    Ecol Evol; 2018 May; 8(10):4958-4966. PubMed ID: 29876073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes.
    Morris N; Alldred M; Zarnoch C; Alter SE
    Microb Ecol; 2023 Apr; 85(3):916-930. PubMed ID: 36826588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrient Enrichment Alters Salt Marsh Fungal Communities and Promotes Putative Fungal Denitrifiers.
    Kearns PJ; Bulseco-McKim AN; Hoyt H; Angell JH; Bowen JL
    Microb Ecol; 2019 Feb; 77(2):358-369. PubMed ID: 29978357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of drift algae accumulation and nitrate loading on nitrogen cycling in a eutrophic coastal sediment.
    Wong WW; Greening C; Shelley G; Lappan R; Leung PM; Kessler A; Winfrey B; Poh SC; Cook P
    Sci Total Environ; 2021 Oct; 790():147749. PubMed ID: 34091344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marsh sediments chronically exposed to nitrogen enrichment contain degraded organic matter that is less vulnerable to decomposition via nitrate reduction.
    Bulseco AN; Murphy AE; Giblin AE; Tucker J; Sanderman J; Bowen JL
    Sci Total Environ; 2024 Mar; 915():169681. PubMed ID: 38163591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term impacts of disturbance on nitrogen-cycling bacteria in a New England salt marsh.
    Bernhard AE; Dwyer C; Idrizi A; Bender G; Zwick R
    Front Microbiol; 2015; 6():46. PubMed ID: 25699033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of coastal wetland to aquaculture ponds decreased N
    Yang P; Tang KW; Tong C; Lai DYF; Zhang L; Lin X; Yang H; Tan L; Zhang Y; Hong Y; Tang C; Lin Y
    Water Res; 2022 Dec; 227():119326. PubMed ID: 36368085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coastal eutrophication as a driver of salt marsh loss.
    Deegan LA; Johnson DS; Warren RS; Peterson BJ; Fleeger JW; Fagherazzi S; Wollheim WM
    Nature; 2012 Oct; 490(7420):388-92. PubMed ID: 23075989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment.
    Graves CJ; Makrides EJ; Schmidt VT; Giblin AE; Cardon ZG; Rand DM
    Appl Environ Microbiol; 2016 May; 82(9):2862-2871. PubMed ID: 26944843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do Elevated CO
    Lee SH; Megonigal PJ; Kang H
    Microb Ecol; 2017 Oct; 74(3):670-680. PubMed ID: 28331950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments.
    Lage MD; Reed HE; Weihe C; Crain CM; Martiny JB
    ISME J; 2010 Jul; 4(7):933-44. PubMed ID: 20220792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing the Genetic Potential of the Microbially-Mediated Nitrogen Cycle in a Salt Marsh Ecosystem.
    Dini-Andreote F; Brossi MJ; van Elsas JD; Salles JF
    Front Microbiol; 2016; 7():902. PubMed ID: 27379042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of greenhouse gas-consuming microbial communities in surface soils of a nitrogen-removing experimental drainfield.
    Cox AH; Wigginton SK; Amador JA
    Sci Total Environ; 2020 Oct; 739():140362. PubMed ID: 32758972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crab bioturbation alters nitrogen cycling and promotes nitrous oxide emission in intertidal wetlands: Influence and microbial mechanism.
    An Z; Gao D; Chen F; Wu L; Zhou J; Zhang Z; Dong H; Yin G; Han P; Liang X; Liu M; Hou L; Zheng Y
    Sci Total Environ; 2021 Nov; 797():149176. PubMed ID: 34346369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan.
    Nakagawa T; Tsuchiya Y; Ueda S; Fukui M; Takahashi R
    Microbes Environ; 2019 Mar; 34(1):13-22. PubMed ID: 30504642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrous oxide fluxes in estuarine environments: response to global change.
    Murray RH; Erler DV; Eyre BD
    Glob Chang Biol; 2015 Sep; 21(9):3219-45. PubMed ID: 25752934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.