BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29483939)

  • 1. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds.
    Zhu Y; Xie L; Chen GQ; Lee MY; Loque D; Scheller HV
    Biotechnol Biofuels; 2018; 11():46. PubMed ID: 29483939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds.
    Tan H; Yang X; Zhang F; Zheng X; Qu C; Mu J; Fu F; Li J; Guan R; Zhang H; Wang G; Zuo J
    Plant Physiol; 2011 Jul; 156(3):1577-88. PubMed ID: 21562329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize.
    Shen B; Allen WB; Zheng P; Li C; Glassman K; Ranch J; Nubel D; Tarczynski MC
    Plant Physiol; 2010 Jul; 153(3):980-7. PubMed ID: 20488892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.
    Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP
    Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive or seed-specific overexpression of Arabidopsis G-protein γ subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa.
    Roy Choudhury S; Riesselman AJ; Pandey S
    Plant Biotechnol J; 2014 Jan; 12(1):49-59. PubMed ID: 24102738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL.
    Borghi M; Xie DY
    Planta; 2016 Feb; 243(2):549-61. PubMed ID: 26530959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed-specific suppression of ADP-glucose pyrophosphorylase in
    Na G; Aryal N; Fatihi A; Kang J; Lu C
    Biotechnol Biofuels; 2018; 11():330. PubMed ID: 30568730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tree peony nuclear factor Y transcription factor PrNF-YC2 promotes seed oil accumulation.
    Yang W; Xin Z; Hu J; Zhang Y; Zhang Q; Niu L
    Plant J; 2023 Jul; 115(2):546-562. PubMed ID: 37058107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome and metabolome analysis suggests bottlenecks that limit seed and oil yields in transgenic
    Abdullah HM; Chhikara S; Akbari P; Schnell DJ; Pareek A; Dhankher OP
    Biotechnol Biofuels; 2018; 11():335. PubMed ID: 30574188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.
    Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R
    PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G; Mu X; Grabowski P; Schmutz J; Lu C
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling of Camelina sativa to identify genes involved in triacylglycerol biosynthesis and accumulation in the developing seeds.
    Abdullah HM; Akbari P; Paulose B; Schnell D; Qi W; Park Y; Pareek A; Dhankher OP
    Biotechnol Biofuels; 2016; 9():136. PubMed ID: 27382413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peanut LEAFY COTYLEDON1-type genes participate in regulating the embryo development and the accumulation of storage lipids.
    Tang G; Xu P; Jiang C; Li G; Shan L; Wan S
    Plant Cell Rep; 2024 Apr; 43(5):124. PubMed ID: 38643320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina.
    Cai G; Wang G; Kim SC; Li J; Zhou Y; Wang X
    Biotechnol Biofuels; 2021 Feb; 14(1):49. PubMed ID: 33640013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.
    Elahi N; Duncan RW; Stasolla C
    Plant Physiol Biochem; 2016 Mar; 100():52-63. PubMed ID: 26773545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving seed size, seed weight and seedling emergence in Camelina sativa by overexpressing the Atsob3-6 gene variant.
    Sharma Koirala P; Neff MM
    Transgenic Res; 2020 Aug; 29(4):409-418. PubMed ID: 32748170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of patatin-related phospholipase AIIIδ altered plant growth and increased seed oil content in camelina.
    Li M; Wei F; Tawfall A; Tang M; Saettele A; Wang X
    Plant Biotechnol J; 2015 Aug; 13(6):766-78. PubMed ID: 25557877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.
    Iven T; Hornung E; Heilmann M; Feussner I
    Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.