These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29483939)

  • 21. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1 (ZmSAD1) gene.
    Du H; Huang M; Hu J; Li J
    BMC Plant Biol; 2016 Jun; 16(1):137. PubMed ID: 27297560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerating gene function discovery by rapid phenotyping of fatty acid composition and oil content of single transgenic T
    Ma S; Du C; Ohlrogge J; Zhang M
    Plant Direct; 2020 Aug; 4(8):e00253. PubMed ID: 32818167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Similarity of expression patterns of knotted1 and ZmLEC1 during somatic and zygotic embryogenesis in maize ( Zea mays L.).
    Zhang S; Wong L; Meng L; Lemaux PG
    Planta; 2002 Jun; 215(2):191-4. PubMed ID: 12029467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. JcMYB1, a Jatropha R2R3MYB Transcription Factor Gene, Modulates Lipid Biosynthesis in Transgenic Plants.
    Khan K; Kumar V; Niranjan A; Shanware A; Sane VA
    Plant Cell Physiol; 2019 Feb; 60(2):462-475. PubMed ID: 30476253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creating yellow seed Camelina sativa with enhanced oil accumulation by CRISPR-mediated disruption of Transparent Testa 8.
    Cai Y; Liang Y; Shi H; Cui J; Prakash S; Zhang J; Anaokar S; Chai J; Schwender J; Lu C; Yu XH; Shanklin J
    Plant Biotechnol J; 2024 Jun; ():. PubMed ID: 38859598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
    Bansal S; Durrett TP
    Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two Arabidopsis promoters drive seed-coat specific gene expression in pennycress and camelina.
    Li X; Yell V; Li X
    Plant Methods; 2023 Dec; 19(1):140. PubMed ID: 38053155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Seed-Specific Expression of
    Tang G; Xu P; Ma W; Wang F; Liu Z; Wan S; Shan L
    Front Plant Sci; 2018; 9():260. PubMed ID: 29559985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering a feedback inhibition-insensitive plant dihydrodipicolinate synthase to increase lysine content in Camelina sativa seeds.
    Huang A; Coutu C; Harrington M; Rozwadowski K; Hegedus DD
    Transgenic Res; 2022 Feb; 31(1):131-148. PubMed ID: 34802109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa.
    Dalal J; Lopez H; Vasani NB; Hu Z; Swift JE; Yalamanchili R; Dvora M; Lin X; Xie D; Qu R; Sederoff HW
    Biotechnol Biofuels; 2015; 8():175. PubMed ID: 26516348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation.
    Lu C; Kang J
    Plant Cell Rep; 2008 Feb; 27(2):273-8. PubMed ID: 17899095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of the plastocyanin gene PETE2 in Camelina sativa improves seed yield and salt tolerance.
    Okooboh GO; Haferkamp I; Rühle T; Leister D; Neuhaus HE
    J Plant Physiol; 2023 Nov; 290():154103. PubMed ID: 37788546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
    Kanai M; Mano S; Kondo M; Hayashi M; Nishimura M
    Plant Biotechnol J; 2016 May; 14(5):1241-50. PubMed ID: 26503031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.
    Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB
    Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increasing Monounsaturated Fatty Acid Contents in Hexaploid
    Lee KR; Jeon I; Yu H; Kim SG; Kim HS; Ahn SJ; Lee J; Lee SK; Kim HU
    Front Plant Sci; 2021; 12():702930. PubMed ID: 34267775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis.
    Pouvreau B; Baud S; Vernoud V; Morin V; Py C; Gendrot G; Pichon JP; Rouster J; Paul W; Rogowsky PM
    Plant Physiol; 2011 Jun; 156(2):674-86. PubMed ID: 21474435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield.
    Zhang Y; Yu L; Yung KF; Leung DY; Sun F; Lim BL
    Biotechnol Biofuels; 2012 Apr; 5():19. PubMed ID: 22472516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Silico Analysis of Fatty Acid Desaturases Structures in
    Raboanatahiry N; Yin Y; Chen K; He J; Yu L; Li M
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate deficiency modifies lipid composition and seed oil production in camelina.
    Li J; Su Y; Shapiro CA; Schachtman DP; Wang X
    Plant Sci; 2023 May; 330():111636. PubMed ID: 36791961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds.
    Abdullah HM; Pang N; Chilcoat B; Shachar-Hill Y; Schnell DJ; Dhankher OP
    Plant Physiol Biochem; 2024 Mar; 208():108470. PubMed ID: 38422576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.