These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 29483941)
1. Genome-resolved metagenomics of sugarcane vinasse bacteria. Cassman NA; Lourenço KS; do Carmo JB; Cantarella H; Kuramae EE Biotechnol Biofuels; 2018; 11():48. PubMed ID: 29483941 [TBL] [Abstract][Full Text] [Related]
2. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Lourenço KS; Rossetto R; Vitti AC; Montezano ZF; Soares JR; Sousa RM; do Carmo JB; Kuramae EE; Cantarella H Sci Total Environ; 2019 Feb; 650(Pt 1):1476-1486. PubMed ID: 30308834 [TBL] [Abstract][Full Text] [Related]
3. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Lourenço KS; Suleiman AKA; Pijl A; van Veen JA; Cantarella H; Kuramae EE Microbiome; 2018 Aug; 6(1):142. PubMed ID: 30103819 [TBL] [Abstract][Full Text] [Related]
4. Bacterial community composition and diversity of two different forms of an organic residue of bioenergy crop. Cipriano MAP; Suleiman AKA; da Silveira APD; do Carmo JB; Kuramae EE PeerJ; 2019; 7():e6768. PubMed ID: 31024771 [TBL] [Abstract][Full Text] [Related]
5. Lourenço KS; Cassman NA; Pijl AS; van Veen JA; Cantarella H; Kuramae EE Front Microbiol; 2018; 9():674. PubMed ID: 29692763 [TBL] [Abstract][Full Text] [Related]
6. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse. Fernandes BS; Vieira JPF; Contesini FJ; Mantelatto PE; Zaiat M; Pradella JGDC Crit Rev Biotechnol; 2017 Dec; 37(8):1048-1061. PubMed ID: 28423943 [TBL] [Abstract][Full Text] [Related]
7. Enriched microbial consortia for dark fermentation of sugarcane vinasse towards value-added short-chain organic acids and alcohol production. de Souza Moraes B; Mary Dos Santos G; Palladino Delforno T; Tadeu Fuess L; José da Silva A J Biosci Bioeng; 2019 May; 127(5):594-601. PubMed ID: 30420331 [TBL] [Abstract][Full Text] [Related]
8. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Fuess LT; Garcia ML; Zaiat M Sci Total Environ; 2018 Sep; 634():29-40. PubMed ID: 29626768 [TBL] [Abstract][Full Text] [Related]
10. Vinasse from sugarcane bagasse (hemicellulose) acid hydrolysate and molasses supplemented: biodegradability and toxicity. Candido JP; Almeida ÉC; de Oliveira Leite DN; Brienzo M; de Franceschi de Angelis D Ecotoxicology; 2021 Jul; 30(5):818-827. PubMed ID: 33856614 [TBL] [Abstract][Full Text] [Related]
11. Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N Suleiman AKA; Lourenço KS; Pitombo LM; Mendes LW; Roesch LFW; Pijl A; Carmo JB; Cantarella H; Kuramae EE Sci Total Environ; 2018 Aug; 631-632():1089-1099. PubMed ID: 29727935 [TBL] [Abstract][Full Text] [Related]
12. Vinasse fertirrigation alters soil resistome dynamics: an analysis based on metagenomic profiles. Braga LPP; Alves RF; Dellias MTF; Navarrete AA; Basso TO; Tsai SM BioData Min; 2017; 10():17. PubMed ID: 28546829 [TBL] [Abstract][Full Text] [Related]
13. Influence of Vinasse Application in the Structure and Composition of the Bacterial Community of the Soil under Sugarcane Cultivation. Omori WP; de Camargo AF; Goulart KC; Lemos EG; de Souza JA Int J Microbiol; 2016; 2016():2349514. PubMed ID: 27528875 [TBL] [Abstract][Full Text] [Related]
14. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. Fuess LT; Rodrigues IJ; Garcia ML J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1063-1072. PubMed ID: 28737443 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the effect of different treatment methods on sugarcane vinasse remediation. Castro LEN; Santos JVF; Fagnani KC; Alves HJ; Colpini LMS J Environ Sci Health B; 2019; 54(9):791-800. PubMed ID: 31554463 [TBL] [Abstract][Full Text] [Related]
16. Understanding microbiome dynamics and functional responses during acidogenic fermentation of sucrose and sugarcane vinasse through metatranscriptomic analysis. Mota VT; Delforno TP; Ribeiro JC; Zaiat M; Oliveira VM Environ Res; 2024 Apr; 246():118150. PubMed ID: 38218518 [TBL] [Abstract][Full Text] [Related]
17. New generation biofuel: continuous acidogenesis of sucrose-raffinose mixture simulating vinasse is promoted by γ-alumina pellets. Lappa K; Kandylis P; Bastas N; Klaoudatos S; Athanasopoulos N; Bekatorou A; Kanellaki M; Koutinas AA Biotechnol Biofuels; 2015; 8():74. PubMed ID: 25991923 [TBL] [Abstract][Full Text] [Related]
18. Acidobacteria Subgroups and Their Metabolic Potential for Carbon Degradation in Sugarcane Soil Amended With Vinasse and Nitrogen Fertilizers. de Chaves MG; Silva GGZ; Rossetto R; Edwards RA; Tsai SM; Navarrete AA Front Microbiol; 2019; 10():1680. PubMed ID: 31417506 [TBL] [Abstract][Full Text] [Related]
19. Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes. Saraiva JP; Bartholomäus A; Toscan RB; Baldrian P; Nunes da Rocha U Mol Ecol Resour; 2023 Jul; 23(5):1066-1076. PubMed ID: 36847735 [TBL] [Abstract][Full Text] [Related]
20. Assessment of microbial diversity associated with CH Oliveira BG; Mendes LW; Smyth EM; Tsai SM; Feigl BJ; Mackie RI J Environ Manage; 2020 Sep; 269():110748. PubMed ID: 32425165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]