BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29484452)

  • 1. Requirement or exclusion of inverted repeat sequences with cruciform-forming potential in Escherichia coli revealed by genome-wide analyses.
    Miura O; Ogake T; Ohyama T
    Curr Genet; 2018 Aug; 64(4):945-958. PubMed ID: 29484452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strong structural correlation between short inverted repeat sequences and the polyadenylation signal in yeast and nucleosome exclusion by these inverted repeats.
    Miura O; Ogake T; Yoneyama H; Kikuchi Y; Ohyama T
    Curr Genet; 2019 Apr; 65(2):575-590. PubMed ID: 30498953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of potential cruciform and H-DNA forming sequences in genomic DNA.
    Schroth GP; Ho PS
    Nucleic Acids Res; 1995 Jun; 23(11):1977-83. PubMed ID: 7596826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palindrome analyser - A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences.
    Brázda V; Kolomazník J; Lýsek J; Hároníková L; Coufal J; Št'astný J
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1739-45. PubMed ID: 27603574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure.
    Coufal J; Jagelská EB; Liao JC; Brázda V
    Biochem Biophys Res Commun; 2013 Nov; 441(1):83-8. PubMed ID: 24134839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells.
    Zheng GX; Kochel T; Hoepfner RW; Timmons SE; Sinden RR
    J Mol Biol; 1991 Sep; 221(1):107-22. PubMed ID: 1920399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excision of unstable artificial gene-specific inverted repeats mediates scar-free gene deletions in Escherichia coli.
    Tear CJ; Lim C; Zhao H
    Appl Biochem Biotechnol; 2015 Feb; 175(4):1858-67. PubMed ID: 25427592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription regulation in vitro by an E. coli promoter containing a DNA cruciform in the '-35' region.
    Horwitz MS
    Nucleic Acids Res; 1989 Jul; 17(14):5537-45. PubMed ID: 2668890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2'-Deoxyguanosine.
    Fleming AM; Zhu J; Jara-Espejo M; Burrows CJ
    Biochemistry; 2020 Jul; 59(28):2616-2626. PubMed ID: 32567845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of orthologous eukaryotic mRNAs: potential hidden functional signals.
    Shabalina SA; Ogurtsov AY; Rogozin IB; Koonin EV; Lipman DJ
    Nucleic Acids Res; 2004; 32(5):1774-82. PubMed ID: 15031317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes.
    Kolb J; Chuzhanova NA; Högel J; Vasquez KM; Cooper DN; Bacolla A; Kehrer-Sawatzki H
    Chromosome Res; 2009; 17(4):469-83. PubMed ID: 19475482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Prevalence and Evolutionary Conservation of Inverted Repeats in Proteobacteria.
    Lavi B; Levy Karin E; Pupko T; Hazkani-Covo E
    Genome Biol Evol; 2018 Mar; 10(3):918-927. PubMed ID: 29608719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids.
    Bowater RP; Bohálová N; Brázda V
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive superhelical transitions involving cruciform extrusion.
    Zhabinskaya D; Benham CJ
    Nucleic Acids Res; 2013 Nov; 41(21):9610-21. PubMed ID: 23969416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome.
    Strawbridge EM; Benson G; Gelfand Y; Benham CJ
    Curr Genet; 2010 Aug; 56(4):321-40. PubMed ID: 20446088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.
    Ma J; Yang B; Zhu W; Sun L; Tian J; Wang X
    Gene; 2013 Oct; 528(2):120-31. PubMed ID: 23900198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli.
    Du X; Wojtowicz D; Bowers AA; Levens D; Benham CJ; Przytycka TM
    Nucleic Acids Res; 2013 Jul; 41(12):5965-77. PubMed ID: 23620297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction to: Requirement or exclusion of inverted repeat sequences with cruciform-forming potential in Escherichia coli revealed by genome-wide analyses.
    Miura O; Ogake T; Ohyama T
    Curr Genet; 2018 Oct; 64(5):1171. PubMed ID: 30136148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons.
    Christensen AC; Lyznik A; Mohammed S; Elowsky CG; Elo A; Yule R; Mackenzie SA
    Plant Cell; 2005 Oct; 17(10):2805-16. PubMed ID: 16169894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of the intrinsic terminators of transcription across the genus Mycobacterium.
    Mitra A; Angamuthu K; Nagaraja V
    Tuberculosis (Edinb); 2008 Nov; 88(6):566-75. PubMed ID: 18768372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.