BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2948446)

  • 1. ATPase activity of biotin carboxylase provides evidence for initial activation of HCO3- by ATP in the carboxylation of biotin.
    Climent I; Rubio V
    Arch Biochem Biophys; 1986 Dec; 251(2):465-70. PubMed ID: 2948446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bicarbonate-dependent ATP cleavage catalysed by pyruvate carboxylase in the absence of pyruvate.
    Attwood PV; Graneri BD
    Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):1011-7. PubMed ID: 1445229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations.
    Ogita T; Knowles JR
    Biochemistry; 1988 Oct; 27(21):8028-33. PubMed ID: 2976600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of ATP binding residues of biotin carboxylase. Insight into the mechanism of catalysis.
    Sloane V; Blanchard CZ; Guillot F; Waldrop GL
    J Biol Chem; 2001 Jul; 276(27):24991-6. PubMed ID: 11346647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of 3-methylcrotonyl-coenzyme-A carboxylase from leaves of Zea mays.
    Diez TA; Wurtele ES; Nikolau BJ
    Arch Biochem Biophys; 1994 Apr; 310(1):64-75. PubMed ID: 8161223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utility of molecular dynamics simulations for understanding site-directed mutagenesis of glycine residues in biotin carboxylase.
    Bordelon T; Nilsson Lill SO; Waldrop GL
    Proteins; 2009 Mar; 74(4):808-19. PubMed ID: 18704941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of activation of bicarbonate ion by mitochondrial carbamoyl-phosphate synthetase: formation of enzyme-bound adenosine diphosphate from the adenosine triphosphate that yields inorganic phosphate.
    Rubio V; Britton HG; Grisolia S; Sproat BS; Lowe G
    Biochemistry; 1981 Mar; 20(7):1969-74. PubMed ID: 6261808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic mechanism of biotin carboxylase: steady-state kinetic investigations.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4317-25. PubMed ID: 2971391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase.
    Tipton PA; Cleland WW
    Biochemistry; 1988 Jun; 27(12):4325-31. PubMed ID: 3048384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations at four active site residues of biotin carboxylase abolish substrate-induced synergism by biotin.
    Blanchard CZ; Lee YM; Frantom PA; Waldrop GL
    Biochemistry; 1999 Mar; 38(11):3393-400. PubMed ID: 10079084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding and carboxylation by dethiobiotin synthetase--a kinetic and X-ray study.
    Alexeev D; Baxter RL; Smekal O; Sawyer L
    Structure; 1995 Nov; 3(11):1207-15. PubMed ID: 8591031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of biotin carboxylase by a reaction intermediate analog: implications for the kinetic mechanism.
    Blanchard CZ; Amspacher D; Strongin R; Waldrop GL
    Biochem Biophys Res Commun; 1999 Dec; 266(2):466-71. PubMed ID: 10600526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetyl coenzyme A carboxylase system of Escherichia coli. Site of carboxylation of biotin and enzymatic reactivity of 1'-N-(ureido)-carboxybiotin derivatives.
    Guchhait RB; Polakis SE; Hollis D; Fenselau C; Lane MD
    J Biol Chem; 1974 Oct; 249(20):6646-56. PubMed ID: 4154090
    [No Abstract]   [Full Text] [Related]  

  • 15. Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Adina-Zada A; Jitrapakdee S; Surinya KH; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9724-37. PubMed ID: 21957995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of carbamoyl phosphate synthetase from Escherichia coli--binding of the ATP molecules used in the reaction and sequestration by the enzyme of the ATP molecule that yields carbamoyl phosphate.
    Rubio V; Llorente P; Britton HG
    Eur J Biochem; 1998 Jul; 255(1):262-70. PubMed ID: 9692927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and the mechanism of action of pyruvate carboxylase.
    Attwood PV
    Int J Biochem Cell Biol; 1995 Mar; 27(3):231-49. PubMed ID: 7780827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase.
    Stapleton MA; Javid-Majd F; Harmon MF; Hanks BA; Grahmann JL; Mullins LS; Raushel FM
    Biochemistry; 1996 Nov; 35(45):14352-61. PubMed ID: 8916922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and numerical simulation of biotin carboxylase kinetics: implications for half-sites reactivity.
    de Queiroz MS; Waldrop GL
    J Theor Biol; 2007 May; 246(1):167-75. PubMed ID: 17266990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.