These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 29484567)
1. Development of 3D printed fibrillar collagen scaffold for tissue engineering. Nocera AD; ComÃn R; Salvatierra NA; Cid MP Biomed Microdevices; 2018 Feb; 20(2):26. PubMed ID: 29484567 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Hierarchical Nanofibrous Collagen Scaffold Fabricated Using Fibrillated Collagen and Pluronic F-127 for Regenerating Bone Tissue. Lee J; Kim G ACS Appl Mater Interfaces; 2018 Oct; 10(42):35801-35811. PubMed ID: 30260631 [TBL] [Abstract][Full Text] [Related]
3. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Suo H; Zhang J; Xu M; Wang L Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111963. PubMed ID: 33812591 [TBL] [Abstract][Full Text] [Related]
4. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Sun K; Li R; Jiang W; Sun Y; Li H Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126 [TBL] [Abstract][Full Text] [Related]
5. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
6. [PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY]. Zhang R; Tu Y; Zhao M; Chen C; Liang Haiqian ; Wang J; Zhang S; Li X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1022-7. PubMed ID: 26677627 [TBL] [Abstract][Full Text] [Related]
7. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
8. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173 [TBL] [Abstract][Full Text] [Related]
9. Collagenous matrix supported by a 3D-printed scaffold for osteogenic differentiation of dental pulp cells. Fahimipour F; Dashtimoghadam E; Rasoulianboroujeni M; Yazdimamaghani M; Khoshroo K; Tahriri M; Yadegari A; Gonzalez JA; Vashaee D; Lobner DC; Jafarzadeh Kashi TS; Tayebi L Dent Mater; 2018 Feb; 34(2):209-220. PubMed ID: 29054688 [TBL] [Abstract][Full Text] [Related]
10. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering. Yeo M; Lee JS; Chun W; Kim GH Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966 [TBL] [Abstract][Full Text] [Related]
11. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Gostynska N; Shankar Krishnakumar G; Campodoni E; Panseri S; Montesi M; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M Biomed Mater; 2017 Aug; 12(5):055002. PubMed ID: 28573980 [TBL] [Abstract][Full Text] [Related]
12. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. Gupta D; Singh AK; Dravid A; Bellare J ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613 [TBL] [Abstract][Full Text] [Related]
13. Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds. Huang KH; Lin YH; Shie MY; Lin CP J Formos Med Assoc; 2018 Oct; 117(10):879-887. PubMed ID: 30097222 [TBL] [Abstract][Full Text] [Related]
14. 3D printing of photocurable poly(glycerol sebacate) elastomers. Yeh YC; Highley CB; Ouyang L; Burdick JA Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Inzana JA; Olvera D; Fuller SM; Kelly JP; Graeve OA; Schwarz EM; Kates SL; Awad HA Biomaterials; 2014 Apr; 35(13):4026-34. PubMed ID: 24529628 [TBL] [Abstract][Full Text] [Related]
16. 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation. Nayak VV; Tovar N; Khan D; Pereira AC; Mijares DQ; Weck M; Durand A; Smay JE; Torroni A; Coelho PG; Witek L Gels; 2023 Aug; 9(8):. PubMed ID: 37623094 [TBL] [Abstract][Full Text] [Related]
17. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Mozdzen LC; Rodgers R; Banks JM; Bailey RC; Harley BA Acta Biomater; 2016 Mar; 33():25-33. PubMed ID: 26850145 [TBL] [Abstract][Full Text] [Related]
18. Design and characterization of 3D hybrid collagen matrixes as a dermal substitute in skin tissue engineering. Ramanathan G; Singaravelu S; Muthukumar T; Thyagarajan S; Perumal PT; Sivagnanam UT Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():359-370. PubMed ID: 28024598 [TBL] [Abstract][Full Text] [Related]
19. Development of hybrid polyvinylpyrrolidone/carboxymethyl cellulose/collagen incorporated oregano scaffolds via direct ink write printing for potential wound healing applications. Gillani SMH; Mughal A; Khan RAA; Nawaz MH; Razzaq Z; Ismat MS; Hussain R; Wadood A; Ahmed S; Minhas B; Abbas M; Vayalpurayil T; Rehman MAU Int J Biol Macromol; 2024 Oct; 278(Pt 2):134528. PubMed ID: 39111499 [TBL] [Abstract][Full Text] [Related]
20. 3D printing process of oxidized nanocellulose and gelatin scaffold. Xu X; Zhou J; Jiang Y; Zhang Q; Shi H; Liu D J Biomater Sci Polym Ed; 2018 Aug; 29(12):1498-1513. PubMed ID: 29716440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]