These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 29484585)

  • 1. Guidelines for Inferring and Characterizing a Family of Bacterial trans-Acting Small Noncoding RNAs.
    Lagares A; Valverde C
    Methods Mol Biol; 2018; 1737():31-45. PubMed ID: 29484585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.
    Carroll RK; Weiss A; Broach WH; Wiemels RE; Mogen AB; Rice KC; Shaw LN
    mBio; 2016 Feb; 7(1):e01990-15. PubMed ID: 26861020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin, Evolution, and Loss of Bacterial Small RNAs.
    Dutcher HA; Raghavan R
    Microbiol Spectr; 2018 Apr; 6(2):. PubMed ID: 29623872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium.
    Amin SV; Roberts JT; Patterson DG; Coley AB; Allred JA; Denner JM; Johnson JP; Mullen GE; O'Neal TK; Smith JT; Cardin SE; Carr HT; Carr SL; Cowart HE; DaCosta DH; Herring BR; King VM; Polska CJ; Ward EE; Wise AA; McAllister KN; Chevalier D; Spector MP; Borchert GM
    RNA Biol; 2016; 13(3):331-42. PubMed ID: 26853797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common and phylogenetically widespread coding for peptides by bacterial small RNAs.
    Friedman RC; Kalkhof S; Doppelt-Azeroual O; Mueller SA; Chovancová M; von Bergen M; Schwikowski B
    BMC Genomics; 2017 Jul; 18(1):553. PubMed ID: 28732463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs.
    Livny J; Teonadi H; Livny M; Waldor MK
    PLoS One; 2008 Sep; 3(9):e3197. PubMed ID: 18787707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of staphylococcal sRNAs: insights into species-specific adaption and the evolution of pathogenesis.
    Broach WH; Weiss A; Shaw LN
    Microb Genom; 2016 Jul; 2(7):e000065. PubMed ID: 28348860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional noise and exaptation as sources for bacterial sRNAs.
    Jose BR; Gardner PP; Barquist L
    Biochem Soc Trans; 2019 Apr; 47(2):527-539. PubMed ID: 30837318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico 'fishing' using known small regulatory RNA (sRNA) candidates as the decoy from Escherichia coli, Salmonella typhi and Salmonella typhimurium manifested 14 novel sRNA candidates in the orthologous region of Proteus mirabilis.
    KishanRaj S; Sumitha S; Siventhiran B; Thiviyaa O; Sathasivam KV; Xavier R; Tang TH; Citartan M; Chinni SV
    Mol Biol Rep; 2018 Dec; 45(6):2333-2343. PubMed ID: 30284142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. sRNA-Xcc1, an integron-encoded transposon- and plasmid-transferred trans-acting sRNA, is under the positive control of the key virulence regulators HrpG and HrpX of Xanthomonas campestris pathovar campestris.
    Chen XL; Tang DJ; Jiang RP; He YQ; Jiang BL; Lu GT; Tang JL
    RNA Biol; 2011; 8(6):947-53. PubMed ID: 21941121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Annotation, Expression Analysis, and Stability of Candidate sRNAs in Group B Streptococcus.
    Keogh RA; Spencer BL; Sorensen HM; Zapf RL; Briaud P; Bonsall AE; Doran KS; Carroll RK
    mBio; 2021 Dec; 12(6):e0280321. PubMed ID: 34724819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A survey of sRNA families in α-proteobacteria.
    del Val C; Romero-Zaliz R; Torres-Quesada O; Peregrina A; Toro N; Jiménez-Zurdo JI
    RNA Biol; 2012 Feb; 9(2):119-29. PubMed ID: 22418845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Workflow for a Computational Analysis of an sRNA Candidate in Bacteria.
    Wright PR; Georg J
    Methods Mol Biol; 2018; 1737():3-30. PubMed ID: 29484584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of streptococcal small RNAs that are putative targets of RNase III through bioinformatics analysis of RNA sequencing data.
    Rath EC; Pitman S; Cho KH; Bai Y
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):540. PubMed ID: 29297355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do base-pairing small RNAs evolve?
    Updegrove TB; Shabalina SA; Storz G
    FEMS Microbiol Rev; 2015 May; 39(3):379-91. PubMed ID: 25934120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms.
    Dutta T; Srivastava S
    Gene; 2018 May; 656():60-72. PubMed ID: 29501814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the small RNA interactome in bacteria using RIL-seq.
    Melamed S; Faigenbaum-Romm R; Peer A; Reiss N; Shechter O; Bar A; Altuvia Y; Argaman L; Margalit H
    Nat Protoc; 2018 Jan; 13(1):1-33. PubMed ID: 29215635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs.
    Georg J; Lalaouna D; Hou S; Lott SC; Caldelari I; Marzi S; Hess WR; Romby P
    Mol Microbiol; 2020 Mar; 113(3):603-612. PubMed ID: 31705780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.