BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1330 related articles for article (PubMed ID: 29484604)

  • 1. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Mapping of Small RNA-Target Interactions in Bacteria.
    Melamed S; Peer A; Faigenbaum-Romm R; Gatt YE; Reiss N; Bar A; Altuvia Y; Argaman L; Margalit H
    Mol Cell; 2016 Sep; 63(5):884-97. PubMed ID: 27588604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition among Hfq-binding small RNAs in Escherichia coli.
    Moon K; Gottesman S
    Mol Microbiol; 2011 Dec; 82(6):1545-62. PubMed ID: 22040174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation.
    Iosub IA; van Nues RW; McKellar SW; Nieken KJ; Marchioretto M; Sy B; Tree JJ; Viero G; Granneman S
    Elife; 2020 May; 9():. PubMed ID: 32356726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation.
    Lahiry A; Stimple SD; Wood DW; Lease RA
    ACS Synth Biol; 2017 Apr; 6(4):648-658. PubMed ID: 28067500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
    Cameron TA; De Lay NR
    J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments.
    Cameron TA; Matz LM; Sinha D; De Lay NR
    Nucleic Acids Res; 2019 Sep; 47(16):8821-8837. PubMed ID: 31329973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Producing Hfq/Sm Proteins and sRNAs for Structural and Biophysical Studies of Ribonucleoprotein Assembly.
    Stanek KA; Mura C
    Methods Mol Biol; 2018; 1737():273-299. PubMed ID: 29484599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS.
    Henderson CA; Vincent HA; Casamento A; Stone CM; Phillips JO; Cary PD; Sobott F; Gowers DM; Taylor JEN; Callaghan AJ
    RNA; 2013 Aug; 19(8):1089-104. PubMed ID: 23804244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro.
    Partouche D; Malabirade A; Bizien T; Velez M; Trépout S; Marco S; Militello V; Sandt C; Wien F; Arluison V
    Methods Mol Biol; 2018; 1737():321-340. PubMed ID: 29484601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cycling of RNAs on Hfq.
    Wagner EG
    RNA Biol; 2013 Apr; 10(4):619-26. PubMed ID: 23466677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets.
    Zhang A; Schu DJ; Tjaden BC; Storz G; Gottesman S
    J Mol Biol; 2013 Oct; 425(19):3678-97. PubMed ID: 23318956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural model of an mRNA in complex with the bacterial chaperone Hfq.
    Peng Y; Curtis JE; Fang X; Woodson SA
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17134-9. PubMed ID: 25404287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria.
    Pandey SP; Winkler JA; Li H; Camacho DM; Collins JJ; Walker GC
    BMC Genomics; 2014 Feb; 15():121. PubMed ID: 24511998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects of RNA-based regulation by Hfq and its partner sRNAs.
    Kavita K; de Mets F; Gottesman S
    Curr Opin Microbiol; 2018 Apr; 42():53-61. PubMed ID: 29125938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-transcriptional gene regulation by an Hfq-independent small RNA in Caulobacter crescentus.
    Fröhlich KS; Förstner KU; Gitai Z
    Nucleic Acids Res; 2018 Nov; 46(20):10969-10982. PubMed ID: 30165530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Transcription Termination of Small RNAs and by Small RNAs: Molecular Mechanisms and Biological Functions.
    Chen J; Morita T; Gottesman S
    Front Cell Infect Microbiol; 2019; 9():201. PubMed ID: 31249814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 67.