These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29484618)

  • 21. Screw pyrolysis technology for sewage sludge treatment.
    Tomasi Morgano M; Leibold H; Richter F; Stapf D; Seifert H
    Waste Manag; 2018 Mar; 73():487-495. PubMed ID: 28601579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of pyrolysis gasification of livestock manure, food wastewater, and their co-digested sludge.
    Oh DY; Kim D; Park KY
    Chemosphere; 2024 Jun; 357():142007. PubMed ID: 38631497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partial oxidation of sewage sludge briquettes in a updraft fixed bed.
    Kim M; Lee Y; Park J; Ryu C; Ohm TI
    Waste Manag; 2016 Mar; 49():204-211. PubMed ID: 26860426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Syngas analysis by hybrid modeling of sewage sludge gasification in downdraft reactor: Validation and optimization.
    Viswanathan K; Abbas S; Wu W
    Waste Manag; 2022 May; 144():132-143. PubMed ID: 35349905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.
    Hu G; Li J; Zhang X; Li Y
    J Environ Manage; 2017 May; 192():234-242. PubMed ID: 28171835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.
    Sun Y; Zhang Z; Liu L; Wang X
    Bioresour Technol; 2015 Dec; 198():364-71. PubMed ID: 26409106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixed bed reactor.
    Luo S; Xiao B; Hu Z; Liu S; Guan Y; Cai L
    Bioresour Technol; 2010 Aug; 101(16):6517-20. PubMed ID: 20363619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production.
    Ghodke PK; Sharma AK; Pandey JK; Chen WH; Patel A; Ashokkumar V
    J Environ Manage; 2021 Nov; 298():113450. PubMed ID: 34388542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time.
    Yang X; Yuan C; Xu J; Zhang W
    Bioresour Technol; 2015 Mar; 179():602-605. PubMed ID: 25542402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.
    Neumann J; Meyer J; Ouadi M; Apfelbacher A; Binder S; Hornung A
    Waste Manag; 2016 Jan; 47(Pt A):141-8. PubMed ID: 26190827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochar from co-pyrolysis of biological sludge and woody waste followed by chemical and thermal activation: end-of-waste procedure for sludge management and biochar sorption efficiency for anionic and cationic dyes.
    Bakari Z; Fichera M; El Ghadraoui A; Renai L; Giurlani W; Santianni D; Fibbi D; Bruzzoniti MC; Del Bubba M
    Environ Sci Pollut Res Int; 2024 May; 31(24):35249-35265. PubMed ID: 38720130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-pyrolysis of sewage sludge and manure.
    Ruiz-Gómez N; Quispe V; Ábrego J; Atienza-Martínez M; Murillo MB; Gea G
    Waste Manag; 2017 Jan; 59():211-221. PubMed ID: 27843025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-production of activated carbon, fuel-gas, and oil from the pyrolysis of corncob mixtures with wet and dried sewage sludge.
    Shao L; Jiang W; Feng L; Zhang L
    Waste Manag Res; 2014 Jun; 32(6):519-26. PubMed ID: 24951551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow pyrolysis of municipal solid waste (MSW): A review.
    Lu JS; Chang Y; Poon CS; Lee DJ
    Bioresour Technol; 2020 Sep; 312():123615. PubMed ID: 32517890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar.
    Trabelsi ABH; Zaafouri K; Friaa A; Abidi S; Naoui S; Jamaaoui F
    Environ Sci Pollut Res Int; 2021 Feb; 28(8):9777-9791. PubMed ID: 33156501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of polycyclic aromatic hydrocarbons (PAHs) formed in three-phase products from the pyrolysis of various wastewater sewage sludge.
    Hu Y; Xia Y; Di Maio F; Yu F; Yu W
    J Hazard Mater; 2020 May; 389():122045. PubMed ID: 32000122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge.
    Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA
    Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrolysis of waste tyres: a review.
    Williams PT
    Waste Manag; 2013 Aug; 33(8):1714-28. PubMed ID: 23735607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels.
    Veses A; Sanahuja-Parejo O; Callén MS; Murillo R; García T
    Waste Manag; 2020 Jan; 101():171-179. PubMed ID: 31614284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrolysis characteristics and products distribution of petroleum sludges.
    Wang Z; Gong Z; Wang Z; Li X; Liu J; Tang C; Chu Z
    Environ Technol; 2022 May; 43(12):1819-1832. PubMed ID: 33206008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.