These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29484728)

  • 1. A Bioinspired Interface Design for Improving the Strength and Electrical Conductivity of Graphene-Based Fibers.
    Ma T; Gao HL; Cong HP; Yao HB; Wu L; Yu ZY; Chen SM; Yu SH
    Adv Mater; 2018 Apr; 30(15):e1706435. PubMed ID: 29484728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-Based Fibers: Recent Advances in Preparation and Application.
    Xu T; Zhang Z; Qu L
    Adv Mater; 2020 Feb; 32(5):e1901979. PubMed ID: 31334581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity.
    Kim IH; Yun T; Kim JE; Yu H; Sasikala SP; Lee KE; Koo SH; Hwang H; Jung HJ; Park JY; Jeong HS; Kim SO
    Adv Mater; 2018 Aug; ():e1803267. PubMed ID: 30088842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions.
    Zhang Y; Peng J; Li M; Saiz E; Wolf SE; Cheng Q
    ACS Nano; 2018 Sep; 12(9):8901-8908. PubMed ID: 30021062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene/Graphitized Polydopamine/Carbon Nanotube All-Carbon Ternary Composite Films with Improved Mechanical Properties and Through-Plane Thermal Conductivity.
    Zou R; Liu F; Hu N; Ning H; Gong Y; Wang S; Huang K; Jiang X; Xu C; Fu S; Li Y; Yan C
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57391-57400. PubMed ID: 33301313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel graphene-based micro/nano architecture with high strength and conductivity inspired by multiple creatures.
    Li M; Wang X; Zhao R; Miao Y; Liu Z
    Sci Rep; 2021 Jan; 11(1):1387. PubMed ID: 33446847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal, Mechanical and Electrical Properties of Carbon Fiber Fabric and Graphene Reinforced Segmented Polyurethane Composites.
    Shi Z; Zhang C; Chen XG; Li A; Zhang YF
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological Design of Ultrastrong and Highly Conductive Graphene Films.
    Wen Y; Wu M; Zhang M; Li C; Shi G
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28892207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eco-Friendly Bioinspired Interface Design for High-Performance Cellulose Nanofibril/Carbon Nanotube Nanocomposites.
    Zhang C; Chen G; Wang X; Zhou S; Yu J; Feng X; Li L; Chen P; Qi H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55527-55535. PubMed ID: 33236889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High-Performance Weaveable/Wearable Supercapacitors.
    Yu C; An J; Zhou R; Xu H; Zhou J; Chen Q; Sun G; Huang W
    Small; 2020 Jun; 16(25):e2000653. PubMed ID: 32432831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide.
    Cui W; Li M; Liu J; Wang B; Zhang C; Jiang L; Cheng Q
    ACS Nano; 2014 Sep; 8(9):9511-7. PubMed ID: 25106494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nacre-inspired composite films with high mechanical strength constructed from MXenes and wood-inspired hydrothermal cellulose-based nanofibers for high performance flexible supercapacitors.
    Chang L; Peng Z; Zhang T; Yu C; Zhong W
    Nanoscale; 2021 Feb; 13(5):3079-3091. PubMed ID: 33522537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nacre-Inspired Strong MXene/Cellulose Fiber with Superior Supercapacitive Performance via Synergizing the Interfacial Bonding and Interlayer Spacing.
    Wang H; Wang Y; Chang J; Yang J; Dai H; Xia Z; Hui Z; Wang R; Huang W; Sun G
    Nano Lett; 2023 Jun; 23(12):5663-5672. PubMed ID: 37310991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics.
    Wang C; Zhang M; Xia K; Gong X; Wang H; Yin Z; Guan B; Zhang Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13331-13338. PubMed ID: 28345872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents.
    Wan S; Zhang Q; Zhou X; Li D; Ji B; Jiang L; Cheng Q
    ACS Nano; 2017 Jul; 11(7):7074-7083. PubMed ID: 28632385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices.
    Chen S; Qiu L; Cheng HM
    Chem Rev; 2020 Mar; 120(5):2811-2878. PubMed ID: 32073258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-Temperature, Highly Durable Ti
    Lee SH; Eom W; Shin H; Ambade RB; Bang JH; Kim HW; Han TH
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10434-10442. PubMed ID: 32040289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Metal-Ion Mediated Method for Functionalization of Graphene Fiber.
    Hua L; Shi P; Li L; Yu C; Chen R; Gong Y; Du Z; Zhou J; Zhang H; Tang X; Sun G; Huang W
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37022-37030. PubMed ID: 28968058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior Performance of Artificial Nacre Based on Graphene Oxide Nanosheets.
    Wang Y; Yuan H; Ma P; Bai H; Chen M; Dong W; Xie Y; Deshmukh YS
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):4215-4222. PubMed ID: 28094506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials.
    Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.