BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29484876)

  • 1. Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features.
    Lenz M; Krug R; Dillmann C; Stroop R; Gerhardt NC; Welp H; Schmieder K; Hofmann MR
    J Biomed Opt; 2018 Feb; 23(7):1-7. PubMed ID: 29484876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases.
    Möller J; Bartsch A; Lenz M; Tischoff I; Krug R; Welp H; Hofmann MR; Schmieder K; Miller D
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1517-1526. PubMed ID: 34053010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility evaluation of micro-optical coherence tomography (μOCT) for rapid brain tumor type and grade discriminations: μOCT images versus pathology.
    Yu X; Hu C; Zhang W; Zhou J; Ding Q; Sadiq MT; Fan Z; Yuan Z; Liu L
    BMC Med Imaging; 2019 Dec; 19(1):102. PubMed ID: 31888539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography.
    Dolganova IN; Chernomyrdin NV; Aleksandrova PV; Beshplav ST; Potapov AA; Reshetov IV; Kurlov VN; Tuchin VV; Zaytsev KI
    J Biomed Opt; 2018 Apr; 23(9):1-9. PubMed ID: 29644811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
    Lingley-Papadopoulos CA; Loew MH; Zara JM
    J Biomed Opt; 2009; 14(4):044010. PubMed ID: 19725722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric imaging of cancer with optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Texture analysis of optical coherence tomography images: feasibility for tissue classification.
    Gossage KW; Tkaczyk TS; Rodriguez JJ; Barton JK
    J Biomed Opt; 2003 Jul; 8(3):570-5. PubMed ID: 12880366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain.
    Baran U; Zhu W; Choi WJ; Omori M; Zhang W; Alkayed NJ; Wang RK
    J Neurosci Methods; 2016 Sep; 270():132-137. PubMed ID: 27328369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for optical coherence tomography image classification using local features and earth mover's distance.
    Sun Y; Lei M
    J Biomed Opt; 2009; 14(5):054037. PubMed ID: 19895138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images.
    Zysk AM; Boppart SA
    J Biomed Opt; 2006; 11(5):054015. PubMed ID: 17092164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
    Wan S; Lee HC; Huang X; Xu T; Xu T; Zeng X; Zhang Z; Sheikine Y; Connolly JL; Fujimoto JG; Zhou C
    Med Image Anal; 2017 May; 38():104-116. PubMed ID: 28327449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping tissue optical attenuation to identify cancer using optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):657-64. PubMed ID: 20426168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification.
    Mesa KJ; Selmic LE; Pande P; Monroy GL; Reagan J; Samuelson J; Driskell E; Li J; Marjanovic M; Chaney EJ; Boppart SA
    Lasers Surg Med; 2017 Mar; 49(3):240-248. PubMed ID: 28319274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning classification of non-melanoma skin cancers from image features obtained by optical coherence tomography.
    Jørgensen TM; Tycho A; Mogensen M; Bjerring P; Jemec GB
    Skin Res Technol; 2008 Aug; 14(3):364-9. PubMed ID: 19159385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Texture analysis of speckle in optical coherence tomography images of tissue phantoms.
    Gossage KW; Smith CM; Kanter EM; Hariri LP; Stone AL; Rodriguez JJ; Williams SK; Barton JK
    Phys Med Biol; 2006 Mar; 51(6):1563-75. PubMed ID: 16510963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-field swept-source optical coherence tomography and neural tissue classification for deep brain imaging.
    Almog IF; Chen FD; Senova S; Fomenko A; Gondard E; Sacher WD; Lozano AM; Poon JKS
    J Biophotonics; 2020 Feb; 13(2):e201960083. PubMed ID: 31710771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.