These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 29485102)
1. Influence of experimental parameters on iron oxide nanoparticle properties synthesized by thermal decomposition: size and nuclear magnetic resonance studies. Belaïd S; Stanicki D; Vander Elst L; Muller RN; Laurent S Nanotechnology; 2018 Apr; 29(16):165603. PubMed ID: 29485102 [TBL] [Abstract][Full Text] [Related]
2. Nonaqueous magnetic nanoparticle suspensions with controlled particle size and nuclear magnetic resonance properties. Meledandri CJ; Stolarczyk JK; Ghosh S; Brougham DF Langmuir; 2008 Dec; 24(24):14159-65. PubMed ID: 19053647 [TBL] [Abstract][Full Text] [Related]
3. Key Parameters on the Microwave Assisted Synthesis of Magnetic Nanoparticles for MRI Contrast Agents. Brollo MEF; Veintemillas-Verdaguer S; Salván CM; Morales MDP Contrast Media Mol Imaging; 2017; 2017():8902424. PubMed ID: 29348738 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Hufschmid R; Arami H; Ferguson RM; Gonzales M; Teeman E; Brush LN; Browning ND; Krishnan KM Nanoscale; 2015 Jul; 7(25):11142-54. PubMed ID: 26059262 [TBL] [Abstract][Full Text] [Related]
5. Influence of Experimental Parameters of a Continuous Flow Process on the Properties of Very Small Iron Oxide Nanoparticles (VSION) Designed for T Vangijzegem T; Stanicki D; Panepinto A; Socoliuc V; Vekas L; Muller RN; Laurent S Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32326593 [TBL] [Abstract][Full Text] [Related]
6. Ultrasmall Ferrite Nanoparticles Synthesized via Dynamic Simultaneous Thermal Decomposition for High-Performance and Multifunctional T Zhang H; Li L; Liu XL; Jiao J; Ng CT; Yi JB; Luo YE; Bay BH; Zhao LY; Peng ML; Gu N; Fan HM ACS Nano; 2017 Apr; 11(4):3614-3631. PubMed ID: 28371584 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of monodisperse spherical nanocrystals. Park J; Joo J; Kwon SG; Jang Y; Hyeon T Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914 [TBL] [Abstract][Full Text] [Related]
8. Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Taboada E; Rodríguez E; Roig A; Oró J; Roch A; Muller RN Langmuir; 2007 Apr; 23(8):4583-8. PubMed ID: 17355158 [TBL] [Abstract][Full Text] [Related]
9. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Lassenberger A; Grünewald TA; van Oostrum PDJ; Rennhofer H; Amenitsch H; Zirbs R; Lichtenegger HC; Reimhult E Chem Mater; 2017 May; 29(10):4511-4522. PubMed ID: 28572705 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of alpha-Fe nanoparticles by solventless thermal decomposition. Cha HG; Kim YH; Kim CW; Lee DK; Moon SD; Kwon HW; Kang YS J Nanosci Nanotechnol; 2006 Nov; 6(11):3412-6. PubMed ID: 17252778 [TBL] [Abstract][Full Text] [Related]
11. Size-dependent properties of magnetic iron oxide nanocrystals. Demortière A; Panissod P; Pichon BP; Pourroy G; Guillon D; Donnio B; Bégin-Colin S Nanoscale; 2011 Jan; 3(1):225-32. PubMed ID: 21060937 [TBL] [Abstract][Full Text] [Related]
12. The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials. Cursaru LM; Piticescu RM; Dragut DV; Tudor IA; Kuncser V; Iacob N; Stoiciu F Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31906420 [TBL] [Abstract][Full Text] [Related]
13. Optimizing the Binding Energy of the Surfactant to Iron Oxide Yields Truly Monodisperse Nanoparticles. Sharifi Dehsari H; Harris RA; Ribeiro AH; Tremel W; Asadi K Langmuir; 2018 Jun; 34(22):6582-6590. PubMed ID: 29726684 [TBL] [Abstract][Full Text] [Related]
14. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Wetterskog E; Agthe M; Mayence A; Grins J; Wang D; Rana S; Ahniyaz A; Salazar-Alvarez G; Bergström L Sci Technol Adv Mater; 2014 Oct; 15(5):055010. PubMed ID: 27877722 [TBL] [Abstract][Full Text] [Related]
15. Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications. Basly B; Felder-Flesch D; Perriat P; Pourroy G; Bégin-Colin S Contrast Media Mol Imaging; 2011; 6(3):132-8. PubMed ID: 21698771 [TBL] [Abstract][Full Text] [Related]
16. A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition. Belaïd S; Laurent S; Vermeech M; Vander Elst L; Perez-Morga D; Muller RN Nanotechnology; 2013 Feb; 24(5):055705. PubMed ID: 23306107 [TBL] [Abstract][Full Text] [Related]
17. Precise Size Control of the Growth of Fe Muro-Cruces J; Roca AG; López-Ortega A; Fantechi E; Del-Pozo-Bueno D; Estradé S; Peiró F; Sepúlveda B; Pineider F; Sangregorio C; Nogues J ACS Nano; 2019 Jul; 13(7):7716-7728. PubMed ID: 31173684 [TBL] [Abstract][Full Text] [Related]
18. Size-tunable synthesis of iron oxide nanocrystals by continuous seed-mediated growth: role of alkylamine species in the stepwise thermal decomposition of iron(II) oxalate. Nozawa R; Naka T; Kurihara M; Togashi T Dalton Trans; 2021 Nov; 50(44):16021-16029. PubMed ID: 34613325 [TBL] [Abstract][Full Text] [Related]
19. Size-controlled synthesis and magnetic studies of monodisperse FePd nanoparticles. Hou Y; Kondoh H; Ohta T J Nanosci Nanotechnol; 2009 Jan; 9(1):202-8. PubMed ID: 19441297 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of ligand-stabilized metal oxide nanocrystals and epitaxial core/shell nanocrystals via a lower-temperature esterification process. Ito D; Yokoyama S; Zaikova T; Masuko K; Hutchison JE ACS Nano; 2014 Jan; 8(1):64-75. PubMed ID: 24369702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]