These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 29485124)

  • 61. Regulation of the Human Phosphatase PTPN4 by the inter-domain linker connecting the PDZ and the phosphatase domains.
    Caillet-Saguy C; Toto A; Guerois R; Maisonneuve P; di Silvio E; Sawyer K; Gianni S; Wolff N
    Sci Rep; 2017 Aug; 7(1):7875. PubMed ID: 28801650
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Computational Design of the Tiam1 PDZ Domain and Its Ligand Binding.
    Mignon D; Panel N; Chen X; Fuentes EJ; Simonson T
    J Chem Theory Comput; 2017 May; 13(5):2271-2289. PubMed ID: 28394603
    [TBL] [Abstract][Full Text] [Related]  

  • 63. MotifAnalyzer-PDZ: A computational program to investigate the evolution of PDZ-binding target specificity.
    Valgardson J; Cosbey R; Houser P; Rupp M; Van Bronkhorst R; Lee M; Jagodzinski F; Amacher JF
    Protein Sci; 2019 Dec; 28(12):2127-2143. PubMed ID: 31599029
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biochemical and computational analysis of LNX1 interacting proteins.
    Wolting CD; Griffiths EK; Sarao R; Prevost BC; Wybenga-Groot LE; McGlade CJ
    PLoS One; 2011; 6(11):e26248. PubMed ID: 22087225
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A regression framework incorporating quantitative and negative interaction data improves quantitative prediction of PDZ domain-peptide interaction from primary sequence.
    Shao X; Tan CS; Voss C; Li SS; Deng N; Bader GD
    Bioinformatics; 2011 Feb; 27(3):383-90. PubMed ID: 21127034
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inferring PDZ domain multi-mutant binding preferences from single-mutant data.
    Zaslavsky E; Bradley P; Yanover C
    PLoS One; 2010 Sep; 5(9):e12787. PubMed ID: 20976110
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protein purification using PDZ affinity chromatography.
    Walkup WG; Kennedy MB
    Curr Protoc Protein Sci; 2015 Apr; 80():9.10.1-9.10.37. PubMed ID: 25829303
    [TBL] [Abstract][Full Text] [Related]  

  • 68. PDZ domains: the building blocks regulating tumorigenesis.
    Subbaiah VK; Kranjec C; Thomas M; Banks L
    Biochem J; 2011 Oct; 439(2):195-205. PubMed ID: 21954943
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of PDZ Interactions by Proteomic Peptide Phage Display.
    Lüchow S; Sundell GN; Ivarsson Y
    Methods Mol Biol; 2021; 2256():41-60. PubMed ID: 34014515
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Accidental interaction between PDZ domains and diclofenac revealed by NMR-assisted virtual screening.
    Tenno T; Goda N; Umetsu Y; Ota M; Kinoshita K; Hiroaki H
    Molecules; 2013 Aug; 18(8):9567-81. PubMed ID: 23966078
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer.
    Nardella C; Visconti L; Malagrinò F; Pagano L; Bufano M; Nalli M; Coluccia A; La Regina G; Silvestri R; Gianni S; Toto A
    Biol Direct; 2021 Oct; 16(1):15. PubMed ID: 34641953
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural characterization and computational analysis of PDZ domains in Monosiga brevicollis.
    Gao M; Mackley IGP; Mesbahi-Vasey S; Bamonte HA; Struyvenberg SA; Landolt L; Pederson NJ; Williams LI; Bahl CD; Brooks L; Amacher JF
    Protein Sci; 2020 Nov; 29(11):2226-2244. PubMed ID: 32914530
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Proteome scanning to predict PDZ domain interactions using support vector machines.
    Hui S; Bader GD
    BMC Bioinformatics; 2010 Oct; 11():507. PubMed ID: 20939902
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The spatial architecture of protein function and adaptation.
    McLaughlin RN; Poelwijk FJ; Raman A; Gosal WS; Ranganathan R
    Nature; 2012 Nov; 491(7422):138-42. PubMed ID: 23041932
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Extensions of PDZ domains as important structural and functional elements.
    Wang CK; Pan L; Chen J; Zhang M
    Protein Cell; 2010 Aug; 1(8):737-51. PubMed ID: 21203915
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Prediction and experimental characterization of nsSNPs altering human PDZ-binding motifs.
    Gfeller D; Ernst A; Jarvik N; Sidhu SS; Bader GD
    PLoS One; 2014; 9(4):e94507. PubMed ID: 24722214
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Protein interactions and ligand binding: from protein subfamilies to functional specificity.
    Rausell A; Juan D; Pazos F; Valencia A
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1995-2000. PubMed ID: 20133844
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Specificity in PDZ-peptide interaction networks: Computational analysis and review.
    Amacher JF; Brooks L; Hampton TH; Madden DR
    J Struct Biol X; 2020; 4():100022. PubMed ID: 32289118
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Supertertiary protein structure affects an allosteric network.
    Laursen L; Kliche J; Gianni S; Jemth P
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24294-24304. PubMed ID: 32929026
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A systematic family-wide investigation reveals that ~30% of mammalian PDZ domains engage in PDZ-PDZ interactions.
    Chang BH; Gujral TS; Karp ES; BuKhalid R; Grantcharova VP; MacBeath G
    Chem Biol; 2011 Sep; 18(9):1143-52. PubMed ID: 21944753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.