These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 29485406)

  • 1. A deep learning approach for fetal QRS complex detection.
    Zhong W; Liao L; Guo X; Wang G
    Physiol Meas; 2018 Apr; 39(4):045004. PubMed ID: 29485406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings.
    Liu C; Li P; Di Maria C; Zhao L; Zhang H; Chen Z
    Physiol Meas; 2014 Aug; 35(8):1665-83. PubMed ID: 25069817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AECG-DecompNet: abdominal ECG signal decomposition through deep-learning model.
    Rasti-Meymandi A; Ghaffari A
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33706298
    [No Abstract]   [Full Text] [Related]  

  • 4. An Efficient and Robust Deep Learning Method with 1-D Octave Convolution to Extract Fetal Electrocardiogram.
    Vo K; Le T; Rahmani AM; Dutt N; Cao H
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Features for the Detection of Fetal QRS Complexes in Non-Invasive Fetal Electrocardiograms.
    Lakshmisha N; Butoliya A; Bajaj V; Gadre VM; Mukherji S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38082674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Approach for the Assessment of Signal Quality of Non-Invasive Foetal Electrocardiography.
    Mertes G; Long Y; Liu Z; Li Y; Yang Y; Clifton DA
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for QRS complex detection in multichannel ECG: Application to self-monitoring of fetal health.
    Varanini M; Tartarisco G; Balocchi R; Macerata A; Pioggia G; Billeci L
    Comput Biol Med; 2017 Jun; 85():125-134. PubMed ID: 27106501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust fetal QRS detection from noninvasive abdominal electrocardiogram based on channel selection and simultaneous multichannel processing.
    Ghaffari A; Mollakazemi MJ; Atyabi SA; Niknazar M
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):581-92. PubMed ID: 26462679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of foetal ECG from abdominal ECG by nonlinear transformation and estimations.
    John RG; Ramachandran KI
    Comput Methods Programs Biomed; 2019 Jul; 175():193-204. PubMed ID: 31104707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fetal ECG Extraction From Maternal ECG Using Attention-Based CycleGAN.
    Mohebbian MR; Vedaei SS; Wahid KA; Dinh A; Marateb HR; Tavakolian K
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):515-526. PubMed ID: 34516382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning with fetal ECG recognition.
    Zhong W; Luo J; Du W
    Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37939396
    [No Abstract]   [Full Text] [Related]  

  • 12. Fetal QRS Detection in Noninvasive Abdominal Electrocardiograms Using Principal Component Analysis and Discrete Wavelet Transforms with Signal Quality Estimation.
    Mollakazemi MJ; Asadi F; Tajnesaei M; Ghaffari A
    J Biomed Phys Eng; 2021 Apr; 11(2):197-204. PubMed ID: 33945588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
    Yıldırım Ö; Pławiak P; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Techniques in the Classification of ECG Signals Using R-Peak Detection Based on the PTB-XL Dataset.
    Śmigiel S; Pałczyński K; Ledziński D
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-lead noninvasive fetal ECG extraction by means of combining clustering and principal components analysis.
    Zhang Y; Yu S
    Med Biol Eng Comput; 2020 Feb; 58(2):419-432. PubMed ID: 31858419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining and benchmarking methods of foetal ECG extraction without maternal or scalp electrode data.
    Behar J; Oster J; Clifford GD
    Physiol Meas; 2014 Aug; 35(8):1569-89. PubMed ID: 25069410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fetal QRS extraction from abdominal recordings via model-based signal processing and intelligent signal merging.
    Haghpanahi M; Borkholder DA
    Physiol Meas; 2014 Aug; 35(8):1591-605. PubMed ID: 25069479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal component model for maternal ECG extraction in fetal QRS detection.
    Lipponen JA; Tarvainen MP
    Physiol Meas; 2014 Aug; 35(8):1637-48. PubMed ID: 25069651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive fetal ECG analysis.
    Clifford GD; Silva I; Behar J; Moody GB
    Physiol Meas; 2014 Aug; 35(8):1521-36. PubMed ID: 25071093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Vectorcardiogram Orientation on the T/QRS Ratio Obtained Via Non-Invasive Fetal ECG.
    Keenan E; Karmakar CK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1883-1886. PubMed ID: 31946265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.