BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29485655)

  • 1. Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells.
    Chen JE; Lumibao J; Blazek A; Gaskins HR; Harley B
    Biomater Sci; 2018 Mar; 6(4):854-862. PubMed ID: 29485655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens.
    Pedron S; Wolter GL; Chen JE; Laken SE; Sarkaria JN; Harley BAC
    Biomaterials; 2019 Oct; 219():119371. PubMed ID: 31352310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular Hyaluronic Acid Influences the Efficacy of EGFR Tyrosine Kinase Inhibitors in a Biomaterial Model of Glioblastoma.
    Pedron S; Hanselman JS; Schroeder MA; Sarkaria JN; Harley BAC
    Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28766870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Combined Influence of Hydrogel Stiffness and Matrix-Bound Hyaluronic Acid Content on Glioblastoma Invasion.
    Chen JE; Pedron S; Harley BAC
    Macromol Biosci; 2017 Aug; 17(8):. PubMed ID: 28379642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix Hyaluronic Acid and Hypoxia Influence a CD133
    Chen JE; Leary S; Barnhouse V; Sarkaria JN; Harley BAC
    Tissue Eng Part A; 2022 Apr; 28(7-8):330-340. PubMed ID: 34435883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels.
    Ngo MT; Harley BA
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28941173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of matrix metalloproteinase-mediated matrix degradation on glioblastoma cell behavior in 3D PEG-based hydrogels.
    Wang C; Tong X; Jiang X; Yang F
    J Biomed Mater Res A; 2017 Mar; 105(3):770-778. PubMed ID: 27770562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional biomimetic hyaluronic acid hydrogels to investigate glioblastoma stem cell behaviors.
    Nakod PS; Kim Y; Rao SS
    Biotechnol Bioeng; 2020 Feb; 117(2):511-522. PubMed ID: 31691953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid.
    Pedron S; Becka E; Harley BA
    Biomaterials; 2013 Oct; 34(30):7408-17. PubMed ID: 23827186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-Mimetic 3D Culture Platforms Allow Investigation of Cooperative Effects of Extracellular Matrix Features on Therapeutic Resistance in Glioblastoma.
    Xiao W; Zhang R; Sohrabi A; Ehsanipour A; Sun S; Liang J; Walthers CM; Ta L; Nathanson DA; Seidlits SK
    Cancer Res; 2018 Mar; 78(5):1358-1370. PubMed ID: 29282221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyaluronic-Acid Based Hydrogels for 3-Dimensional Culture of Patient-Derived Glioblastoma Cells.
    Xiao W; Ehsanipour A; Sohrabi A; Seidlits SK
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Hyaluronic Acid Transitions in Tumor Microenvironment on Glioblastoma Malignancy and Invasive Behavior.
    Chen JE; Pedron S; Shyu P; Hu Y; Sarkaria JN; Harley BAC
    Front Mater; 2018 Jun; 5():. PubMed ID: 30581816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyaluronic acid-based hydrogels to study cancer cell behaviors.
    Goodarzi K; Rao SS
    J Mater Chem B; 2021 Aug; 9(31):6103-6115. PubMed ID: 34259709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of matrix stiffness on the behavior of brain metastatic breast cancer cells in a biomimetic hyaluronic acid hydrogel platform.
    Narkhede AA; Crenshaw JH; Manning RM; Rao SS
    J Biomed Mater Res A; 2018 Jul; 106(7):1832-1841. PubMed ID: 29468800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EGFRvIII/integrin β3 interaction in hypoxic and vitronectinenriching microenvironment promote GBM progression and metastasis.
    Liu Z; Han L; Dong Y; Tan Y; Li Y; Zhao M; Xie H; Ju H; Wang H; Zhao Y; Zheng Q; Wang Q; Su J; Fang C; Fu S; Jiang T; Liu J; Li X; Kang C; Ren H
    Oncotarget; 2016 Jan; 7(4):4680-94. PubMed ID: 26717039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Potential of the Fibronectin Inhibitor Arg-Gly-Asp-Ser in the Development of Therapies for Glioblastoma.
    Castro-Ribeiro ML; Castro VIB; Vieira de Castro J; Pires RA; Reis RL; Costa BM; Ferreira H; Neves NM
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis.
    Wang Y; Liu T; Yang N; Xu S; Li X; Wang D
    Oncol Rep; 2016 Dec; 36(6):3522-3528. PubMed ID: 27748906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glioblastoma Spheroid Invasion through Soft, Brain-Like Matrices Depends on Hyaluronic Acid-CD44 Interactions.
    Safarians G; Sohrabi A; Solomon I; Xiao W; Bastola S; Rajput BW; Epperson M; Rosenzweig I; Tamura K; Singer B; Huang J; Harrison MJ; Sanazzaro T; Condro MC; Kornblum HI; Seidlits SK
    Adv Healthc Mater; 2023 Jun; 12(14):e2203143. PubMed ID: 36694362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion.
    Heffernan JM; Overstreet DJ; Le LD; Vernon BL; Sirianni RW
    Ann Biomed Eng; 2015 Aug; 43(8):1965-77. PubMed ID: 25515315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.