These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 29485686)
21. Depletion of the mitotic kinase Cdc5p in Candida albicans results in the formation of elongated buds that switch to the hyphal fate over time in a Ume6p and Hgc1p-dependent manner. Glory A; van Oostende CT; Geitmann A; Bachewich C Fungal Genet Biol; 2017 Oct; 107():51-66. PubMed ID: 28803909 [TBL] [Abstract][Full Text] [Related]
22. Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression. O'Connor L; Caplice N; Coleman DC; Sullivan DJ; Moran GP Eukaryot Cell; 2010 Sep; 9(9):1383-97. PubMed ID: 20639413 [TBL] [Abstract][Full Text] [Related]
23. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans. Ruben S; Garbe E; Mogavero S; Albrecht-Eckardt D; Hellwig D; Häder A; Krüger T; Gerth K; Jacobsen ID; Elshafee O; Brunke S; Hünniger K; Kniemeyer O; Brakhage AA; Morschhäuser J; Hube B; Vylkova S; Kurzai O; Martin R mBio; 2020 Apr; 11(2):. PubMed ID: 32345638 [TBL] [Abstract][Full Text] [Related]
24. Genetic Analysis of Min K; Biermann A; Hogan DA; Konopka JB mSphere; 2018 Nov; 3(6):. PubMed ID: 30463924 [TBL] [Abstract][Full Text] [Related]
25. G1 and S phase arrest in Candida albicans induces filamentous growth via distinct mechanisms. Chen C; Zeng G; Wang Y Mol Microbiol; 2018 Oct; 110(2):191-203. PubMed ID: 30084240 [TBL] [Abstract][Full Text] [Related]
26. The zinc cluster transcription factor Rha1 is a positive filamentation regulator in Candida albicans. Parvizi Omran R; Ramírez-Zavala B; Aji Tebung W; Yao S; Feng J; Law C; Dumeaux V; Morschhäuser J; Whiteway M Genetics; 2022 Jan; 220(1):. PubMed ID: 34849863 [TBL] [Abstract][Full Text] [Related]
27. An analysis of the impact of NRG1 overexpression on the Candida albicans response to specific environmental stimuli. Cleary IA; Saville SP Mycopathologia; 2010 Jul; 170(1):1-10. PubMed ID: 20232156 [TBL] [Abstract][Full Text] [Related]
28. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Alvarez FJ; Konopka JB Mol Biol Cell; 2007 Mar; 18(3):965-75. PubMed ID: 17192409 [TBL] [Abstract][Full Text] [Related]
29. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related]
30. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. Zeidler U; Lettner T; Lassnig C; Müller M; Lajko R; Hintner H; Breitenbach M; Bito A FEMS Yeast Res; 2009 Feb; 9(1):126-42. PubMed ID: 19054126 [TBL] [Abstract][Full Text] [Related]
31. Candida albicans Filamentation Does Not Require the cAMP-PKA Pathway Wakade RS; Kramara J; Wellington M; Krysan DJ mBio; 2022 Jun; 13(3):e0085122. PubMed ID: 35475642 [TBL] [Abstract][Full Text] [Related]
32. Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis. Cleary IA; Reinhard SM; Lazzell AL; Monteagudo C; Thomas DP; Lopez-Ribot JL; Saville SP FEMS Yeast Res; 2016 Mar; 16(2):fow011. PubMed ID: 26851404 [TBL] [Abstract][Full Text] [Related]
33. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Park YN; Morschhäuser J Eukaryot Cell; 2005 Aug; 4(8):1328-42. PubMed ID: 16087738 [TBL] [Abstract][Full Text] [Related]
34. A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous Nitric Oxide Signaling. Koch B; Barugahare AA; Lo TL; Huang C; Schittenhelm RB; Powell DR; Beilharz TH; Traven A Cell Rep; 2018 Nov; 25(8):2244-2258.e7. PubMed ID: 30463019 [TBL] [Abstract][Full Text] [Related]
35. Candida albicans requires iron to sustain hyphal growth. Luo G; Wang T; Zhang J; Zhang P; Lu Y Biochem Biophys Res Commun; 2021 Jul; 561():106-112. PubMed ID: 34022710 [TBL] [Abstract][Full Text] [Related]
36. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans. Childers DS; Kadosh D PLoS One; 2015; 10(3):e0122775. PubMed ID: 25811669 [TBL] [Abstract][Full Text] [Related]
37. Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Shareck J; Nantel A; Belhumeur P Eukaryot Cell; 2011 Apr; 10(4):565-77. PubMed ID: 21357478 [TBL] [Abstract][Full Text] [Related]
38. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Zheng X; Wang Y; Wang Y EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502 [TBL] [Abstract][Full Text] [Related]
39. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Lindsay AK; Deveau A; Piispanen AE; Hogan DA Eukaryot Cell; 2012 Oct; 11(10):1219-25. PubMed ID: 22886999 [TBL] [Abstract][Full Text] [Related]
40. N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast, Hanumantha Rao K; Paul S; Ghosh S J Fungi (Basel); 2021 Jan; 7(1):. PubMed ID: 33477740 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]