BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29485860)

  • 41. Why selenocysteine replaces cysteine in thioredoxin reductase: a radical hypothesis.
    Nauser T; Steinmann D; Grassi G; Koppenol WH
    Biochemistry; 2014 Aug; 53(30):5017-22. PubMed ID: 24999795
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine.
    Anestål K; Arnér ES
    J Biol Chem; 2003 May; 278(18):15966-72. PubMed ID: 12574159
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism-based inactivation of thioredoxin reductase from Plasmodium falciparum by Mannich bases. Implication for cytotoxicity.
    Davioud-Charvet E; McLeish MJ; Veine DM; Giegel D; Arscott LD; Andricopulo AD; Becker K; Müller S; Schirmer RH; Williams CH; Kenyon GL
    Biochemistry; 2003 Nov; 42(45):13319-30. PubMed ID: 14609342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterization of (Se)2-thioredoxin.
    Müller S; Senn H; Gsell B; Vetter W; Baron C; Böck A
    Biochemistry; 1994 Mar; 33(11):3404-12. PubMed ID: 8136378
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities.
    Cheng Q; Antholine WE; Myers JM; Kalyanaraman B; Arnér ES; Myers CR
    J Biol Chem; 2010 Jul; 285(28):21708-23. PubMed ID: 20457604
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine.
    Kim MJ; Lee BC; Hwang KY; Gladyshev VN; Kim HY
    Biochem Biophys Res Commun; 2015 Jun; 461(4):648-52. PubMed ID: 25912135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities.
    Xu J; Cheng Q; Arnér ES
    Free Radic Biol Med; 2016 May; 94():110-20. PubMed ID: 26898501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo.
    Fang J; Holmgren A
    J Am Chem Soc; 2006 Feb; 128(6):1879-85. PubMed ID: 16464088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of peptide substrates for mammalian thioredoxin reductase.
    Flemer S; Lacey BM; Hondal RJ
    J Pept Sci; 2008 May; 14(5):637-47. PubMed ID: 18035847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preliminary LC-MS Based Screening for Inhibitors of Plasmodium falciparum Thioredoxin Reductase (PfTrxR) among a Set of Antimalarials from the Malaria Box.
    Tiwari NK; Reynolds PJ; Calderón AI
    Molecules; 2016 Mar; 21(4):424. PubMed ID: 27043496
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thioredoxin and glutathione systems in Plasmodium falciparum.
    Jortzik E; Becker K
    Int J Med Microbiol; 2012 Oct; 302(4-5):187-94. PubMed ID: 22939033
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thioredoxin networks in the malarial parasite Plasmodium falciparum.
    Nickel C; Rahlfs S; Deponte M; Koncarevic S; Becker K
    Antioxid Redox Signal; 2006; 8(7-8):1227-39. PubMed ID: 16910770
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selenocysteine-containing thioredoxin reductase in C. elegans.
    Gladyshev VN; Krause M; Xu XM; Korotkov KV; Kryukov GV; Sun QA; Lee BJ; Wootton JC; Hatfield DL
    Biochem Biophys Res Commun; 1999 Jun; 259(2):244-9. PubMed ID: 10362494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mutual sparing effects of selenium and vitamin E in animal nutrition may be further explained by the discovery that mammalian thioredoxin reductase is a selenoenzyme.
    Tamura T; Gladyshev V; Liu SY; Stadtman TC
    Biofactors; 1995-1996; 5(2):99-102. PubMed ID: 8722124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity.
    Fang J; Lu J; Holmgren A
    J Biol Chem; 2005 Jul; 280(26):25284-90. PubMed ID: 15879598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Active sites of thioredoxin reductases: why selenoproteins?
    Gromer S; Johansson L; Bauer H; Arscott LD; Rauch S; Ballou DP; Williams CH; Schirmer RH; Arnér ES
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12618-23. PubMed ID: 14569031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Semisynthesis and characterization of mammalian thioredoxin reductase.
    Eckenroth B; Harris K; Turanov AA; Gladyshev VN; Raines RT; Hondal RJ
    Biochemistry; 2006 Apr; 45(16):5158-70. PubMed ID: 16618105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Purification, crystallization and preliminary crystallographic data for rat cytosolic selenocysteine 498 to cysteine mutant thioredoxin reductase.
    Zhong L; Persson K; Sandalova T; Schneider G; Holmgren A
    Acta Crystallogr D Biol Crystallogr; 2000 Sep; 56(Pt 9):1191-3. PubMed ID: 10957643
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The CXC motif: a functional mimic of protein disulfide isomerase.
    Woycechowsky KJ; Raines RT
    Biochemistry; 2003 May; 42(18):5387-94. PubMed ID: 12731880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1.
    Cheng Q; Sandalova T; Lindqvist Y; Arnér ES
    J Biol Chem; 2009 Feb; 284(6):3998-4008. PubMed ID: 19054767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.