BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29485993)

  • 1. Assessment of data transformations for model-based clustering of RNA-Seq data.
    Noel-MacDonnell JR; Usset J; Goode EL; Fridley BL
    PLoS One; 2018; 13(2):e0191758. PubMed ID: 29485993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject level clustering using a negative binomial model for small transcriptomic studies.
    Li Q; Noel-MacDonnell JR; Koestler DC; Goode EL; Fridley BL
    BMC Bioinformatics; 2018 Dec; 19(1):474. PubMed ID: 30541426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A clustering procedure for three-way RNA sequencing data using data transformations and matrix-variate Gaussian mixture models.
    Scharl T; Grün B
    BMC Bioinformatics; 2024 Mar; 25(1):90. PubMed ID: 38429687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based clustering and data transformations for gene expression data.
    Yeung KY; Fraley C; Murua A; Raftery AE; Ruzzo WL
    Bioinformatics; 2001 Oct; 17(10):977-87. PubMed ID: 11673243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming RNA-Seq data to improve the performance of prognostic gene signatures.
    Zwiener I; Frisch B; Binder H
    PLoS One; 2014; 9(1):e85150. PubMed ID: 24416353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation and model choice for RNA-seq co-expression analysis.
    Rau A; Maugis-Rabusseau C
    Brief Bioinform; 2018 May; 19(3):425-436. PubMed ID: 28065917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parameter-free deep embedded clustering method for single-cell RNA-seq data.
    Zeng Y; Wei Z; Zhong F; Pan Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering of RNA-Seq samples: Comparison study on cancer data.
    Jaskowiak PA; Costa IG; Campello RJGB
    Methods; 2018 Jan; 132():42-49. PubMed ID: 28778489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model selection criterion for model-based clustering of annotated gene expression data.
    Gallopin M; Celeux G; Jaffrézic F; Rau A
    Stat Appl Genet Mol Biol; 2015 Nov; 14(5):413-28. PubMed ID: 26461845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sparse negative binomial mixture model for clustering RNA-seq count data.
    Li Y; Rahman T; Ma T; Tang L; Tseng GC
    Biostatistics; 2022 Dec; 24(1):68-84. PubMed ID: 34363675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data.
    Yang Y; Huh R; Culpepper HW; Lin Y; Love MI; Li Y
    Bioinformatics; 2019 Apr; 35(8):1269-1277. PubMed ID: 30202935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of data normalization on fuzzy clustering of DNA microarray data.
    Kim SY; Lee JW; Bae JS
    BMC Bioinformatics; 2006 Mar; 7():134. PubMed ID: 16533412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FEATS: feature selection-based clustering of single-cell RNA-seq data.
    Vans E; Patil A; Sharma A
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33285568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression analysis using a model-based gene clustering algorithm for RNA-seq data.
    Osabe T; Shimizu K; Kadota K
    BMC Bioinformatics; 2021 Oct; 22(1):511. PubMed ID: 34670485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirichlet process mixture models for single-cell RNA-seq clustering.
    Adossa NA; Rytkönen KT; Elo LL
    Biol Open; 2022 Apr; 11(4):. PubMed ID: 35237784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data.
    Xu Y; Zhang W; Zheng X; Cai X
    Interdiscip Sci; 2024 Mar; 16(1):1-15. PubMed ID: 37815679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.