These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29486123)

  • 1. Automated Planning Enables Complex Protocols on Liquid-Handling Robots.
    Whitehead E; Rudolf F; Kaltenbach HM; Stelling J
    ACS Synth Biol; 2018 Mar; 7(3):922-932. PubMed ID: 29486123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PaR-PaR laboratory automation platform.
    Linshiz G; Stawski N; Poust S; Bi C; Keasling JD; Hillson NJ
    ACS Synth Biol; 2013 May; 2(5):216-22. PubMed ID: 23654257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Capabilities of EvoBot: A Modular, Open-Source Liquid-Handling Robot.
    Nejatimoharrami F; Faina A; Stoy K
    SLAS Technol; 2017 Oct; 22(5):500-506. PubMed ID: 28378607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BioBlocks: Programming Protocols in Biology Made Easier.
    Gupta V; Irimia J; Pau I; Rodríguez-Patón A
    ACS Synth Biol; 2017 Jul; 6(7):1230-1232. PubMed ID: 28051850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standardizing Automated DNA Assembly: Best Practices, Metrics, and Protocols Using Robots.
    Walsh DI; Pavan M; Ortiz L; Wick S; Bobrow J; Guido NJ; Leinicke S; Fu D; Pandit S; Qin L; Carr PA; Densmore D
    SLAS Technol; 2019 Jun; 24(3):282-290. PubMed ID: 30768372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PR-PR: cross-platform laboratory automation system.
    Linshiz G; Stawski N; Goyal G; Bi C; Poust S; Sharma M; Mutalik V; Keasling JD; Hillson NJ
    ACS Synth Biol; 2014 Aug; 3(8):515-24. PubMed ID: 25126893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Analytical Measurement Processes Using a Dual-Arm Robotic System.
    Fleischer H; Joshi S; Roddelkopf T; Klos M; Thurow K
    SLAS Technol; 2019 Jun; 24(3):354-356. PubMed ID: 30816065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet Lab Accelerator: A Web-Based Application Democratizing Laboratory Automation for Synthetic Biology.
    Bates M; Berliner AJ; Lachoff J; Jaschke PR; Groban ES
    ACS Synth Biol; 2017 Jan; 6(1):167-171. PubMed ID: 27529358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment.
    Thieme A; Renwick S; Marschmann M; Guimaraes PI; Weissenborn S; Clifton J
    SLAS Technol; 2024 Oct; 29(5):100180. PubMed ID: 39222913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory systems integration: robotics and automation.
    Felder RA
    Ann Biol Clin (Paris); 1991; 49(5):298-300. PubMed ID: 1928847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of low-cost laboratory automation processes using AutoIt and 4-axis robots.
    Rupp N; Peschke K; Köppl M; Drissner D; Zuchner T
    SLAS Technol; 2022 Oct; 27(5):312-318. PubMed ID: 35830957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated assembly of standard biological parts.
    Leguia M; Brophy J; Densmore D; Anderson JC
    Methods Enzymol; 2011; 498():363-97. PubMed ID: 21601686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programming Robots by Demonstration Using Augmented Reality.
    Soares I; Petry M; Moreira AP
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A user-friendly robotic sample preparation program for fully automated biological sample pipetting and dilution to benefit the regulated bioanalysis.
    Jiang H; Ouyang Z; Zeng J; Yuan L; Zheng N; Jemal M; Arnold ME
    J Lab Autom; 2012 Jun; 17(3):211-21. PubMed ID: 22357562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing QbD, Programming Languages, and Automation for Reproducible Biology.
    Sadowski MI; Grant C; Fell TS
    Trends Biotechnol; 2016 Mar; 34(3):214-227. PubMed ID: 26708960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling high-throughput biology with flexible open-source automation.
    Chory EJ; Gretton DW; DeBenedictis EA; Esvelt KM
    Mol Syst Biol; 2021 Mar; 17(3):e9942. PubMed ID: 33764680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput mouse genotyping using robotics automation.
    Linask KL; Lo CW
    Biotechniques; 2005 Feb; 38(2):219-23. PubMed ID: 15727128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automation of yeast spot assays using an affordable liquid handling robot.
    Taguchi S; Suda Y; Irie K; Ozaki H
    SLAS Technol; 2023 Apr; 28(2):55-62. PubMed ID: 36503082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-handling Lego robots and experiments for STEM education and research.
    Gerber LC; Calasanz-Kaiser A; Hyman L; Voitiuk K; Patil U; Riedel-Kruse IH
    PLoS Biol; 2017 Mar; 15(3):e2001413. PubMed ID: 28323828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Robotic Liquid Handling Assembly of Modular DNA Devices.
    Ortiz L; Pavan M; McCarthy L; Timmons J; Densmore DM
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.