BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29486368)

  • 1. Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates.
    Cavelier S; Dastjerdi AK; McKee MD; Barthelat F
    Bone; 2018 May; 110():304-311. PubMed ID: 29486368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineralization-inhibiting effects of transglutaminase-crosslinked polymeric osteopontin.
    Hoac B; Nelea V; Jiang W; Kaartinen MT; McKee MD
    Bone; 2017 Aug; 101():37-48. PubMed ID: 28428079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Nanomechanics of Noncollagenous Interfibrillar Interface in Bone.
    Wang Y; Morsali R; Dai Z; Minary-Jolandan M; Qian D
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25363-25373. PubMed ID: 32407068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces.
    Lai ZB; Wang M; Yan C; Oloyede A
    J Mech Behav Biomed Mater; 2014 Aug; 36():12-20. PubMed ID: 24786380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transglutaminase-mediated oligomerization promotes osteoblast adhesive properties of osteopontin and bone sialoprotein.
    Forsprecher J; Wang Z; Goldberg HA; Kaartinen MT
    Cell Adh Migr; 2011; 5(1):65-72. PubMed ID: 20864802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteopontin deficiency increases bone fragility but preserves bone mass.
    Thurner PJ; Chen CG; Ionova-Martin S; Sun L; Harman A; Porter A; Ager JW; Ritchie RO; Alliston T
    Bone; 2010 Jun; 46(6):1564-73. PubMed ID: 20171304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteopontin upregulation and polymerization by transglutaminase 2 in calcified arteries of Matrix Gla protein-deficient mice.
    Kaartinen MT; Murshed M; Karsenty G; McKee MD
    J Histochem Cytochem; 2007 Apr; 55(4):375-86. PubMed ID: 17189522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR investigation of the role of osteocalcin and osteopontin at the organic-inorganic interface in bone.
    Nikel O; Laurencin D; McCallum SA; Gundberg CM; Vashishth D
    Langmuir; 2013 Nov; 29(45):13873-82. PubMed ID: 24128197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair.
    McKee MD; Nanci A
    Microsc Res Tech; 1996 Feb; 33(2):141-64. PubMed ID: 8845514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteopontin regulates type I collagen fibril formation in bone tissue.
    Depalle B; McGilvery CM; Nobakhti S; Aldegaither N; Shefelbine SJ; Porter AE
    Acta Biomater; 2021 Jan; 120():194-202. PubMed ID: 32344173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy.
    McKee MD; Zalzal S; Nanci A
    Anat Rec; 1996 Jun; 245(2):293-312. PubMed ID: 8769669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralization induction effects of osteopontin, bone sialoprotein, and dentin phosphoprotein on a biomimetic collagen substrate.
    Zurick KM; Qin C; Bernards MT
    J Biomed Mater Res A; 2013 Jun; 101(6):1571-81. PubMed ID: 23161527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transglutaminase 2-Catalyzed Intramolecular Cross-Linking of Osteopontin.
    Christensen B; Zachariae ED; Scavenius C; Kløverpris S; Oxvig C; Petersen SV; Enghild JJ; Sørensen ES
    Biochemistry; 2016 Jan; 55(2):294-303. PubMed ID: 26678563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteopontin functions as an opsonin and facilitates phagocytosis by macrophages of hydroxyapatite-coated microspheres: implications for bone wound healing.
    Pedraza CE; Nikolcheva LG; Kaartinen MT; Barralet JE; McKee MD
    Bone; 2008 Oct; 43(4):708-16. PubMed ID: 18656563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion of MC3T3-E1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I.
    Bernards MT; Qin C; Ratner BD; Jiang S
    J Biomed Mater Res A; 2008 Sep; 86(3):779-87. PubMed ID: 18041732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin.
    Bernards MT; Qin C; Jiang S
    Colloids Surf B Biointerfaces; 2008 Jul; 64(2):236-47. PubMed ID: 18420388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of transglutaminase reactive residues in human osteopontin and their role in polymerization.
    Christensen B; Zachariae ED; Scavenius C; Thybo M; Callesen MM; Kløverpris S; Oxvig C; Enghild JJ; Sørensen ES
    PLoS One; 2014; 9(11):e113650. PubMed ID: 25419572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretion of Osteopontin by macrophages and its accumulation at tissue surfaces during wound healing in mineralized tissues: a potential requirement for macrophage adhesion and phagocytosis.
    McKee MD; Nanci A
    Anat Rec; 1996 Jun; 245(2):394-409. PubMed ID: 8769675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An immunoelectron microscopic localization of noncollagenous bone proteins (osteocalcin and osteopontin) at the bone-titanium interface of rat tibiae.
    Ayukawa Y; Takeshita F; Inoue T; Yoshinari M; Shimono M; Suetsugu T; Tanaka T
    J Biomed Mater Res; 1998 Jul; 41(1):111-9. PubMed ID: 9641631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilatational band formation in bone.
    Poundarik AA; Diab T; Sroga GE; Ural A; Boskey AL; Gundberg CM; Vashishth D
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19178-83. PubMed ID: 23129653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.