These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29486778)

  • 1. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces.
    Kim MK; Sohn JW; Lee B; Kim SP
    Biomed Eng Online; 2018 Feb; 17(1):28. PubMed ID: 29486778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study.
    Wan Z; Liu T; Ran X; Liu P; Chen W; Zhang S
    Front Comput Neurosci; 2023; 17():1135783. PubMed ID: 37251598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Likelihood Gradient Ascent (LGA): a closed-loop decoder adaptation algorithm for brain-machine interfaces.
    Dangi S; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2768-71. PubMed ID: 24110301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison of Intention Estimation Methods for Decoder Calibration in Intracortical Brain-Computer Interfaces.
    Willett FR; Murphy BA; Young DR; Memberg WD; Blabe CH; Pandarinath C; Franco B; Saab J; Walter BL; Sweet JA; Miller JP; Henderson JM; Shenoy KV; Simeral JD; Jarosiewicz B; Hochberg LR; Kirsch RF; Ajiboye AB
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2066-2078. PubMed ID: 29989927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoder calibration with ultra small current sample set for intracortical brain-machine interface.
    Zhang P; Ma X; Chen L; Zhou J; Wang C; Li W; He J
    J Neural Eng; 2018 Apr; 15(2):026019. PubMed ID: 29343650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Intelligent Intracortical BMI (i
    Shaikh S; So R; Sibindi T; Libedinsky C; Basu A
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1615-1624. PubMed ID: 31581098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acquisition in brain-machine interfaces.
    Dangi S; Gowda S; Moorman HG; Orsborn AL; So K; Shanechi M; Carmena JM
    Neural Comput; 2014 Sep; 26(9):1811-39. PubMed ID: 24922501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brain-machine interface enables bimanual arm movements in monkeys.
    Ifft PJ; Shokur S; Li Z; Lebedev MA; Nicolelis MA
    Sci Transl Med; 2013 Nov; 5(210):210ra154. PubMed ID: 24197735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared Prosthetic Control Based on Multiple Movement Intent Decoders.
    Dantas H; Hansen TC; Warren DJ; Mathews VJ
    IEEE Trans Biomed Eng; 2021 May; 68(5):1547-1556. PubMed ID: 33326374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information sparseness in cortical microelectrode channels while decoding movement direction using an artificial neural network.
    Premchand B; Toe KK; Wang C; Libedinsky C; Ang KK; So RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3534-3537. PubMed ID: 36085749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.
    Sachs NA; Ruiz-Torres R; Perreault EJ; Miller LE
    J Neural Eng; 2016 Feb; 13(1):016009. PubMed ID: 26655766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining decoder design and neural adaptation in brain-machine interfaces.
    Shenoy KV; Carmena JM
    Neuron; 2014 Nov; 84(4):665-80. PubMed ID: 25459407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-source domain adaptation for decoder calibration of intracortical brain-machine interface.
    Li W; Ji S; Chen X; Kuai B; He J; Zhang P; Li Q
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33108775
    [No Abstract]   [Full Text] [Related]  

  • 19. Firing-rate-modulated spike detection and neural decoding co-design.
    Zhang Z; Constandinou TG
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37080210
    [No Abstract]   [Full Text] [Related]  

  • 20. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.