These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29486896)

  • 21. Dynamic stability and compensatory stepping responses during anterior gait-slip perturbations in people with chronic hemiparetic stroke.
    Kajrolkar T; Yang F; Pai YC; Bhatt T
    J Biomech; 2014 Aug; 47(11):2751-8. PubMed ID: 24909333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The retention of fall-resisting behavior derived from treadmill slip-perturbation training in community-dwelling older adults.
    Liu X; Bhatt T; Wang Y; Wang S; Lee A; Pai YC
    Geroscience; 2021 Apr; 43(2):913-926. PubMed ID: 32978705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of arm motion on postural stability when recovering from a slip perturbation.
    Gholizadeh H; Hill A; Nantel J
    J Biomech; 2019 Oct; 95():109269. PubMed ID: 31443945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of obesity on dynamic stability control during recovery from a treadmill-induced slip among young adults.
    Yang F; Kim J; Yang F
    J Biomech; 2017 Feb; 53():148-153. PubMed ID: 28131487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.
    Patel PJ; Bhatt T
    Neuroscience; 2016 Oct; 333():252-63. PubMed ID: 27418344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retention of improvement in gait stability over 14 weeks due to trip-perturbation training is dependent on perturbation dose.
    König M; Epro G; Seeley J; Catalá-Lehnen P; Potthast W; Karamanidis K
    J Biomech; 2019 Feb; 84():243-246. PubMed ID: 30577971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Slip-induced fall-risk assessment based on regular gait pattern in older adults.
    Wang S; Varas-Diaz G; Dusane S; Wang Y; Bhatt T
    J Biomech; 2019 Nov; 96():109334. PubMed ID: 31564458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial.
    Mansfield A; Peters AL; Liu BA; Maki BE
    BMC Geriatr; 2007 May; 7():12. PubMed ID: 17540020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unconstrained slip mechanics and stepping reactions depend on slip onset timing.
    Rasmussen CM; Hunt NH
    J Biomech; 2021 Aug; 125():110572. PubMed ID: 34186292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced intensity in gait-slip training can still improve stability.
    Yang F; Wang TY; Pai YC
    J Biomech; 2014 Jul; 47(10):2330-8. PubMed ID: 24835473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of vibration training in reducing risk of slip-related falls among young adults with obesity.
    Yang F; Munoz J; Han LZ; Yang F
    J Biomech; 2017 May; 57():87-93. PubMed ID: 28431747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls.
    Parijat P; Lockhart TE; Liu J
    Ann Biomed Eng; 2015 Apr; 43(4):958-67. PubMed ID: 25245221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feet kinematics upon slipping discriminate between recoveries and three types of slip-induced falls.
    Allin LJ; Nussbaum MA; Madigan ML
    Ergonomics; 2018 Jun; 61(6):866-876. PubMed ID: 29231784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can prior exposure to repeated non-paretic slips improve reactive responses on novel paretic slips among people with chronic stroke?
    Dusane S; Bhatt T
    Exp Brain Res; 2022 Apr; 240(4):1069-1080. PubMed ID: 35106605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pilot study of reactive balance training using trips and slips with increasing unpredictability in young and older adults: Biomechanical mechanisms, falls and clinical feasibility.
    Okubo Y; Brodie MA; Sturnieks DL; Hicks C; Lord SR
    Clin Biomech (Bristol, Avon); 2019 Jul; 67():171-179. PubMed ID: 31153101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Curvilinear walking elevates fall risk and modulates slip and compensatory step attributes after unconstrained human slips.
    Rasmussen CM; Mun S; Ouattas A; Walski A; Curtze C; Hunt NH
    J Exp Biol; 2024 Mar; 227(6):. PubMed ID: 38456285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic gait stability of treadmill versus overground walking in young adults.
    Yang F; King GA
    J Electromyogr Kinesiol; 2016 Dec; 31():81-87. PubMed ID: 27694060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does severity of motor impairment affect reactive adaptation and fall-risk in chronic stroke survivors?
    Bhatt T; Dusane S; Patel P
    J Neuroeng Rehabil; 2019 Mar; 16(1):43. PubMed ID: 30902097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.