These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 29487036)

  • 1. An experimental and computational study of the inferior vena cava hemodynamics under respiratory-induced collapse of the infrarenal IVC.
    Tedaldi E; Montanari C; Aycock KI; Sturla F; Redaelli A; Manning KB
    Med Eng Phys; 2018 Apr; 54():44-55. PubMed ID: 29487036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational method for predicting inferior vena cava filter performance on a patient-specific basis.
    Aycock KI; Campbell RL; Manning KB; Sastry SP; Shontz SM; Lynch FC; Craven BA
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24805200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part I: Particle Image Velocimetry Measurements at Rest and Exercise Conditions.
    Gallagher MB; Aycock KI; Craven BA; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):641-653. PubMed ID: 30411228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters.
    Aycock KI; Campbell RL; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2017 Jun; 16(3):851-869. PubMed ID: 27904980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Importance of Hemorheology and Patient Anatomy on the Hemodynamics in the Inferior Vena Cava.
    Aycock KI; Campbell RL; Lynch FC; Manning KB; Craven BA
    Ann Biomed Eng; 2016 Dec; 44(12):3568-3582. PubMed ID: 27272211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative CFD study of four inferior vena cava filters.
    López JM; Fortuny G; Puigjaner D; Herrero J; Marimon F
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2990. PubMed ID: 29603681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Experimental and Computational Study on the Effect of Caval Valved Stent Oversizing.
    Ismail M; Kumar GP; Kabinejadian F; Nguyen YN; Cui F; Tay EL; Leo HL
    Cardiovasc Eng Technol; 2016 Sep; 7(3):254-69. PubMed ID: 27357300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suprarenal inferior vena cava filters: a 20-year single-center experience.
    Kalva SP; Chlapoutaki C; Wicky S; Greenfield AJ; Waltman AC; Athanasoulis CA
    J Vasc Interv Radiol; 2008 Jul; 19(7):1041-7. PubMed ID: 18589318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter.
    Swaminathan TN; Hu HH; Patel AA
    J Biomech Eng; 2006 Jun; 128(3):360-70. PubMed ID: 16706585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational predictions of the embolus-trapping performance of an IVC filter in patient-specific and idealized IVC geometries.
    Aycock KI; Campbell RL; Lynch FC; Manning KB; Craven BA
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1957-1969. PubMed ID: 28656515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling hemodynamics in an unoccluded and partially occluded inferior vena cava under rest and exercise conditions.
    Ren Z; Wang SL; Singer MA
    Med Biol Eng Comput; 2012 Mar; 50(3):277-87. PubMed ID: 22354383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New method for ultrasound-guided inferior vena cava filter placement.
    Qin X; Lu C; Ren P; Gu J; Zheng Y; Yu C; Wang J; Xie M
    J Vasc Surg Venous Lymphat Disord; 2018 Jul; 6(4):450-456. PubMed ID: 29602758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hemodynamic analysis of a new retrievable vena cava filter].
    Chen S; Feng H; Li X; Gu J; Wang X; Cao P; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):245-253. PubMed ID: 31016941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional analysis of flow disturbances caused by clots in inferior vena cava filters.
    Rahbar E; Mori D; Moore JE
    J Vasc Interv Radiol; 2011 Jun; 22(6):835-42. PubMed ID: 21414805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro hemodynamic evaluation of a Simon nitinol vena cava filter: possible explanation of IVC occlusion.
    Leask RL; Johnston KW; Ojha M
    J Vasc Interv Radiol; 2001 May; 12(5):613-8. PubMed ID: 11340141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complications of Celect, Günther tulip, and Greenfield inferior vena cava filters on CT follow-up: a single-institution experience.
    McLoney ED; Krishnasamy VP; Castle JC; Yang X; Guy G
    J Vasc Interv Radiol; 2013 Nov; 24(11):1723-9. PubMed ID: 24041915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume associated dynamic geometry and spatial orientation of the inferior vena cava.
    Murphy EH; Arko FR; Trimmer CK; Phangureh VS; Fogarty TJ; Zarins CK
    J Vasc Surg; 2009 Oct; 50(4):835-42; discussion 842-3. PubMed ID: 19660896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation and in vitro experimental study of the hemodynamic performance of vena cava filters with helical forms.
    Huang YX; Li Q; Liu M; Zhao M; Chen Y
    Sci Rep; 2024 Aug; 14(1):17903. PubMed ID: 39095447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory changes in the length of the vena cava: implications for optimal positioning of inferior vena cava filter.
    Hashimoto T; Koizumi J; Yamamoto K; Nishibe T; Dardik A; Shibamoto Y
    Int Angiol; 2019 Apr; 38(2):90-95. PubMed ID: 30650948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.