BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 29487121)

  • 1. Transcriptional Roadmap to Seasonal Variation in Wood Formation of Norway Spruce.
    Jokipii-Lukkari S; Delhomme N; Schiffthaler B; Mannapperuma C; Prestele J; Nilsson O; Street NR; Tuominen H
    Plant Physiol; 2018 Apr; 176(4):2851-2870. PubMed ID: 29487121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcript Accumulation Dynamics of Phenylpropanoid Pathway Genes in the Maturing Xylem and Phloem of Picea abies during Latewood Formation.
    Emiliani G; Traversi ML; Anichini M; Giachi G; Giovannelli A
    J Integr Plant Biol; 2011 Oct; 53(10):783-99. PubMed ID: 21767344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of wood and its control.
    Zhang J; Nieminen K; Serra JA; Helariutta Y
    Curr Opin Plant Biol; 2014 Feb; 17():56-63. PubMed ID: 24507495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NorWood: a gene expression resource for evo-devo studies of conifer wood development.
    Jokipii-Lukkari S; Sundell D; Nilsson O; Hvidsten TR; Street NR; Tuominen H
    New Phytol; 2017 Oct; 216(2):482-494. PubMed ID: 28186632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nutrient optimization on intra-annual wood formation in Norway spruce.
    Kalliokoski T; Mäkinen H; Jyske T; Nöjd P; Linder S
    Tree Physiol; 2013 Nov; 33(11):1145-55. PubMed ID: 24169103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes.
    Cocozza C; Palombo C; Tognetti R; La Porta N; Anichini M; Giovannelli A; Emiliani G
    Tree Physiol; 2016 Jul; 36(7):832-46. PubMed ID: 26941291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments.
    Gričar J; Prislan P; Gryc V; Vavrčík H; de Luis M; Cufar K
    Tree Physiol; 2014 Aug; 34(8):869-81. PubMed ID: 24728295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.
    Shi R; Wang JP; Lin YC; Li Q; Sun YH; Chen H; Sederoff RR; Chiang VL
    Planta; 2017 May; 245(5):927-938. PubMed ID: 28083709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR.
    Koutaniemi S; Warinowski T; Kärkönen A; Alatalo E; Fossdal CG; Saranpää P; Laakso T; Fagerstedt KV; Simola LK; Paulin L; Rudd S; Teeri TH
    Plant Mol Biol; 2007 Oct; 65(3):311-28. PubMed ID: 17764001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar.
    Zhang Y; Chen S; Xu L; Chu S; Yan X; Lin L; Wen J; Zheng B; Chen S; Li Q
    Plant Cell; 2024 May; 36(5):1806-1828. PubMed ID: 38339982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ray Parenchymal Cells Contribute to Lignification of Tracheids in Developing Xylem of Norway Spruce.
    Blokhina O; Laitinen T; Hatakeyama Y; Delhomme N; Paasela T; Zhao L; Street NR; Wada H; Kärkönen A; Fagerstedt K
    Plant Physiol; 2019 Dec; 181(4):1552-1572. PubMed ID: 31558578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cambial response of Norway spruce to modified carbon availability by phloem girdling.
    Winkler A; Oberhuber W
    Tree Physiol; 2017 Nov; 37(11):1527-1535. PubMed ID: 28651354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.
    Obudulu O; Bygdell J; Sundberg B; Moritz T; Hvidsten TR; Trygg J; Wingsle G
    BMC Genomics; 2016 Feb; 17():119. PubMed ID: 26887814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and hormonal regulation of cambial development.
    Ursache R; Nieminen K; Helariutta Y
    Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.
    Li X; Yang X; Wu HX
    BMC Genomics; 2013 Nov; 14(1):768. PubMed ID: 24209714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca).
    Bedon F; Grima-Pettenati J; Mackay J
    BMC Plant Biol; 2007 Mar; 7():17. PubMed ID: 17397551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy.
    Galindo González LM; El Kayal W; Ju CJ; Allen CC; King-Jones S; Cooke JE
    Plant Cell Environ; 2012 Apr; 35(4):682-701. PubMed ID: 21988609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata.
    Li X; Wu HX; Southerton SG
    New Phytol; 2010 Aug; 187(3):764-76. PubMed ID: 20561208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings.
    Giovannelli A; Mattana S; Emiliani G; Anichini M; Traversi ML; Pavone FS; Cicchi R
    Tree Physiol; 2022 Jun; 42(6):1149-1163. PubMed ID: 34918169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.
    Raherison ESM; Giguère I; Caron S; Lamara M; MacKay JJ
    New Phytol; 2015 Jul; 207(1):172-187. PubMed ID: 25728802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.