BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29487285)

  • 1. NAD
    Langelier MF; Zandarashvili L; Aguiar PM; Black BE; Pascal JM
    Nat Commun; 2018 Feb; 9(1):844. PubMed ID: 29487285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage.
    Steffen JD; McCauley MM; Pascal JM
    Nucleic Acids Res; 2016 Nov; 44(20):9771-9783. PubMed ID: 27530425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Captured snapshots of PARP1 in the active state reveal the mechanics of PARP1 allostery.
    Rouleau-Turcotte É; Krastev DB; Pettitt SJ; Lord CJ; Pascal JM
    Mol Cell; 2022 Aug; 82(16):2939-2951.e5. PubMed ID: 35793673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain.
    Dawicki-McKenna JM; Langelier MF; DeNizio JE; Riccio AA; Cao CD; Karch KR; McCauley M; Steffen JD; Black BE; Pascal JM
    Mol Cell; 2015 Dec; 60(5):755-768. PubMed ID: 26626480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying Direct Protein Targets of Poly-ADP-Ribose Polymerases (PARPs) Using Engineered PARP Variants-Orthogonal Nicotinamide Adenine Dinucleotide (NAD+) Analog Pairs.
    Carter-O'Connell I; Cohen MS
    Curr Protoc Chem Biol; 2015 Jun; 7(2):121-39. PubMed ID: 26344237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD+ as a metabolic link between DNA damage and cell death.
    Ying W; Alano CC; Garnier P; Swanson RA
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):216-23. PubMed ID: 15562437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An assessment of poly (ADP-ribose) polymerase-1 role in normal and cancer cells.
    Kumar M; Jaiswal RK; Yadava PK; Singh RP
    Biofactors; 2020 Nov; 46(6):894-905. PubMed ID: 33098603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Colorimetric Assay for Identifying PARP-1 Inhibitors Using a Large Small-Molecule Collection.
    Kotova E; Tulin AV
    Methods Mol Biol; 2017; 1608():299-312. PubMed ID: 28695517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition.
    Ogden TEH; Yang JC; Schimpl M; Easton LE; Underwood E; Rawlins PB; McCauley MM; Langelier MF; Pascal JM; Embrey KJ; Neuhaus D
    Nucleic Acids Res; 2021 Feb; 49(4):2266-2288. PubMed ID: 33511412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair.
    Dantzer F; Amé JC; Schreiber V; Nakamura J; Ménissier-de Murcia J; de Murcia G
    Methods Enzymol; 2006; 409():493-510. PubMed ID: 16793420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces oxidative stress, DNA strand breaks, and poly(ADP-ribose) polymerase-1 activation in human breast carcinoma cell lines.
    Lin PH; Lin CH; Huang CC; Chuang MC; Lin P
    Toxicol Lett; 2007 Aug; 172(3):146-58. PubMed ID: 17669606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of poly(ADP-ribose) polymerase activation in oxidatively stressed cells and tissues using biotinylated NAD substrate.
    Bakondi E; Bai P; Szabó E E; Hunyadi J; Gergely P; Szabó C; Virág L
    J Histochem Cytochem; 2002 Jan; 50(1):91-8. PubMed ID: 11748298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase.
    Endres M; Wang ZQ; Namura S; Waeber C; Moskowitz MA
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1143-51. PubMed ID: 9390645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of PARP-1 activity based on hyperbranched-poly (ADP-ribose) polymers responsive current in artificial nanochannels.
    Liu Y; Fan J; Yang H; Xu E; Wei W; Zhang Y; Liu S
    Biosens Bioelectron; 2018 Aug; 113():136-141. PubMed ID: 29754052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific Binding of snoRNAs to PARP-1 Promotes NAD
    Huang D; Kim DS; Kraus WL
    Biochemistry; 2020 Apr; 59(16):1559-1564. PubMed ID: 32293172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Clickable NAD
    Zhang L; Lin H
    Methods Mol Biol; 2017; 1608():95-109. PubMed ID: 28695506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-NAD-Like poly(ADP-Ribose) Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo.
    Thomas C; Ji Y; Lodhi N; Kotova E; Pinnola AD; Golovine K; Makhov P; Pechenkina K; Kolenko V; Tulin AV
    EBioMedicine; 2016 Nov; 13():90-98. PubMed ID: 27727003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors.
    Hopkins TA; Shi Y; Rodriguez LE; Solomon LR; Donawho CK; DiGiammarino EL; Panchal SC; Wilsbacher JL; Gao W; Olson AM; Stolarik DF; Osterling DJ; Johnson EF; Maag D
    Mol Cancer Res; 2015 Nov; 13(11):1465-77. PubMed ID: 26217019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for allosteric PARP-1 retention on DNA breaks.
    Zandarashvili L; Langelier MF; Velagapudi UK; Hancock MA; Steffen JD; Billur R; Hannan ZM; Wicks AJ; Krastev DB; Pettitt SJ; Lord CJ; Talele TT; Pascal JM; Black BE
    Science; 2020 Apr; 368(6486):. PubMed ID: 32241924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergetic Impairment in Animal and Cellular Models of Alzheimer's Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions.
    Martire S; Fuso A; Mosca L; Forte E; Correani V; Fontana M; Scarpa S; Maras B; d'Erme M
    J Alzheimers Dis; 2016 Aug; 54(1):307-24. PubMed ID: 27567805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.