These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29487285)

  • 41. Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP.
    Kun E; Kirsten E; Mendeleyev J; Ordahl CP
    Biochemistry; 2004 Jan; 43(1):210-6. PubMed ID: 14705947
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In situ staining for poly(ADP-ribose) polymerase activity using an NAD analogue.
    Davis RE; Mysore V; Browning JC; Hsieh JC; Lu QA; Katsikis PD
    J Histochem Cytochem; 1998 Nov; 46(11):1279-89. PubMed ID: 9774627
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inputs and outputs of poly(ADP-ribosyl)ation: Relevance to oxidative stress.
    Hegedűs C; Virág L
    Redox Biol; 2014; 2():978-82. PubMed ID: 25460733
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unraveling the allosteric inhibition mechanism of PARP-1 CAT and the D766/770A mutation effects via Gaussian accelerated molecular dynamics and Markov state model.
    Wang Q; Zhang M; Li A; Yao X; Chen Y
    Comput Biol Med; 2024 Jan; 168():107682. PubMed ID: 38000246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor.
    Liu X; Shi Y; Maag DX; Palma JP; Patterson MJ; Ellis PA; Surber BW; Ready DB; Soni NB; Ladror US; Xu AJ; Iyer R; Harlan JE; Solomon LR; Donawho CK; Penning TD; Johnson EF; Shoemaker AR
    Clin Cancer Res; 2012 Jan; 18(2):510-23. PubMed ID: 22128301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NAD(+) consumption in carcinogen-treated hamster cells overexpressing a dominant negative mutant of poly(ADP-ribose) polymerase.
    Küpper JH; Müller M; Wolf I
    Biochem Biophys Res Commun; 1999 Nov; 265(2):525-9. PubMed ID: 10558902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of poly(ADP-ribose) polymerase-1 by enzyme-initiated auto-PARylation-controlled aggregation of hemin-graphene nanocomposites.
    Liu Y; Xu X; Yang H; Xu E; Wu S; Wei W; Chen J
    Analyst; 2018 May; 143(11):2501-2507. PubMed ID: 29664094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Poly(ADP-ribose) polymerase-1 could facilitate the religation of topoisomerase I-linked DNA inhibited by camptothecin.
    Park SY; Cheng YC
    Cancer Res; 2005 May; 65(9):3894-902. PubMed ID: 15867389
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of poly(ADP-ribose) formation in DNA repair.
    Satoh MS; Lindahl T
    Nature; 1992 Mar; 356(6367):356-8. PubMed ID: 1549180
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells.
    Okuda A; Kurokawa S; Takehashi M; Maeda A; Fukuda K; Kubo Y; Nogusa H; Takatani-Nakase T; Okuda S; Ueda K; Tanaka S
    BMC Neurosci; 2017 Jan; 18(1):14. PubMed ID: 28095779
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tankyrase-1 overexpression reduces genotoxin-induced cell death by inhibiting PARP1.
    Yeh TY; Sbodio JI; Nguyen MT; Meyer TN; Lee RM; Chi NW
    Mol Cell Biochem; 2005 Aug; 276(1-2):183-92. PubMed ID: 16132700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage.
    Riccio AA; Cingolani G; Pascal JM
    Nucleic Acids Res; 2016 Feb; 44(4):1691-702. PubMed ID: 26704974
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro.
    Wang S; Yang X; Lin Y; Qiu X; Li H; Zhao X; Cao L; Liu X; Pang Y; Wang X; Chi Z
    Brain Res; 2013 Oct; 1535():14-23. PubMed ID: 23994215
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasensitive electrochemical detection of poly (ADP-ribose) polymerase-1 via polyaniline deposition.
    Liu Y; Fan J; Shangguan L; Liu Y; Wei Y; Wei W; Liu S
    Talanta; 2018 Apr; 180():127-132. PubMed ID: 29332790
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Histone-dependent PARP-1 inhibitors: A novel therapeutic modality for the treatment of prostate and renal cancers.
    Makhov P; Uzzo RG; Tulin AV; Kolenko VM
    Urol Oncol; 2021 Jun; 39(6):312-315. PubMed ID: 32402770
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyubiquitylation of PARP-1 through ubiquitin K48 is modulated by activated DNA, NAD+, and dipeptides.
    Wang T; Simbulan-Rosenthal CM; Smulson ME; Chock PB; Yang DC
    J Cell Biochem; 2008 May; 104(1):318-28. PubMed ID: 18041763
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing.
    Allinson SL; Dianova II; Dianov GL
    Acta Biochim Pol; 2003; 50(1):169-79. PubMed ID: 12673357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and Modulating Its Transcriptional Activity.
    Luo X; Ryu KW; Kim DS; Nandu T; Medina CJ; Gupte R; Gibson BA; Soccio RE; Yu Y; Gupta RK; Kraus WL
    Mol Cell; 2017 Jan; 65(2):260-271. PubMed ID: 28107648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flavone as PARP-1 inhibitor: its effect on lipopolysaccharide induced gene-expression.
    Geraets L; Moonen HJ; Brauers K; Gottschalk RW; Wouters EF; Bast A; Hageman GJ
    Eur J Pharmacol; 2007 Nov; 573(1-3):241-8. PubMed ID: 17643414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.