These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29487285)

  • 61. An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD(+): application to the high-throughput screening of small molecules as potential inhibitors.
    Putt KS; Hergenrother PJ
    Anal Biochem; 2004 Mar; 326(1):78-86. PubMed ID: 14769338
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A conserved NAD
    Li J; Bonkowski MS; Moniot S; Zhang D; Hubbard BP; Ling AJ; Rajman LA; Qin B; Lou Z; Gorbunova V; Aravind L; Steegborn C; Sinclair DA
    Science; 2017 Mar; 355(6331):1312-1317. PubMed ID: 28336669
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Investigating the Mechanistic Inhibitory Discrepancies of Novel Halogen and Alkyl Di-Substituted Oxadiazole-Based Dibenzo-Azepine-Dione Derivatives on Poly (ADP-Ribose) Polymerase-1.
    Okunlola FO; Soremekun OS; Olotu FA; Soliman MES
    Chem Biodivers; 2021 Jan; 18(1):e2000802. PubMed ID: 33289285
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NAD
    Croteau DL; Fang EF; Nilsen H; Bohr VA
    Cell Cycle; 2017 Mar; 16(6):491-492. PubMed ID: 28145802
    [No Abstract]   [Full Text] [Related]  

  • 65. Chemical Proteomics Approach for Profiling the NAD Interactome.
    Šileikytė J; Sundalam S; David LL; Cohen MS
    J Am Chem Soc; 2021 May; 143(18):6787-6791. PubMed ID: 33914500
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular Imaging: PARP-1 and Beyond.
    Puentes LN; Makvandi M; Mach RH
    J Nucl Med; 2021 Jun; 62(6):765-770. PubMed ID: 33579802
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A two-step mechanism governing PARP1-DNA retention by PARP inhibitors.
    Xue H; Bhardwaj A; Yin Y; Fijen C; Ephstein A; Zhang L; Ding X; Pascal JM; VanArsdale TL; Rothenberg E
    Sci Adv; 2022 Sep; 8(36):eabq0414. PubMed ID: 36070389
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Autoinhibition can identify rare driver mutations and advise pharmacology.
    Nussinov R; Tsai CJ; Jang H
    FASEB J; 2020 Jan; 34(1):16-29. PubMed ID: 31914624
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Linking NAD metabolism and DNA repair to inflammation in SSc.
    Avvedimento EV; Gabrielli A
    Nat Rev Rheumatol; 2021 Jul; 17(7):381-382. PubMed ID: 33963306
    [No Abstract]   [Full Text] [Related]  

  • 70. Withdrawal notice to "Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC)".
    Prasad R; Horton JK; Wilson SH
    DNA Repair (Amst); 2022 Jun; 114():103322. PubMed ID: 35338996
    [No Abstract]   [Full Text] [Related]  

  • 71. The comings and goings of PARP-1 in response to DNA damage.
    Pascal JM
    DNA Repair (Amst); 2018 Nov; 71():177-182. PubMed ID: 30177435
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural basis for allosteric PARP-1 retention on DNA breaks.
    Zandarashvili L; Langelier MF; Velagapudi UK; Hancock MA; Steffen JD; Billur R; Hannan ZM; Wicks AJ; Krastev DB; Pettitt SJ; Lord CJ; Talele TT; Pascal JM; Black BE
    Science; 2020 Apr; 368(6486):. PubMed ID: 32241924
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multifaceted Role of PARP-1 in DNA Repair and Inflammation: Pathological and Therapeutic Implications in Cancer and Non-Cancer Diseases.
    Pazzaglia S; Pioli C
    Cells; 2019 Dec; 9(1):. PubMed ID: 31877876
    [TBL] [Abstract][Full Text] [Related]  

  • 74. PARP-1 regulates DNA repair factor availability.
    Schiewer MJ; Mandigo AC; Gordon N; Huang F; Gaur S; de Leeuw R; Zhao SG; Evans J; Han S; Parsons T; Birbe R; McCue P; McNair C; Chand SN; Cendon-Florez Y; Gallagher P; McCann JJ; Poudel Neupane N; Shafi AA; Dylgjeri E; Brand LJ; Visakorpi T; Raj GV; Lallas CD; Trabulsi EJ; Gomella LG; Dicker AP; Kelly WK; Leiby BE; Knudsen B; Feng FY; Knudsen KE
    EMBO Mol Med; 2018 Dec; 10(12):. PubMed ID: 30467127
    [TBL] [Abstract][Full Text] [Related]  

  • 75. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation.
    Suskiewicz MJ; Zobel F; Ogden TEH; Fontana P; Ariza A; Yang JC; Zhu K; Bracken L; Hawthorne WJ; Ahel D; Neuhaus D; Ahel I
    Nature; 2020 Mar; 579(7800):598-602. PubMed ID: 32028527
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin.
    Bilokapic S; Suskiewicz MJ; Ahel I; Halic M
    Nature; 2020 Sep; 585(7826):609-613. PubMed ID: 32939087
    [TBL] [Abstract][Full Text] [Related]  

  • 77. NAD
    Cell Metab; 2019 Jul; 30(1):7-9. PubMed ID: 31269430
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD
    Martens CR; Denman BA; Mazzo MR; Armstrong ML; Reisdorph N; McQueen MB; Chonchol M; Seals DR
    Nat Commun; 2018 Mar; 9(1):1286. PubMed ID: 29599478
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence.
    Rajman L; Chwalek K; Sinclair DA
    Cell Metab; 2018 Mar; 27(3):529-547. PubMed ID: 29514064
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition.
    Ogden TEH; Yang JC; Schimpl M; Easton LE; Underwood E; Rawlins PB; McCauley MM; Langelier MF; Pascal JM; Embrey KJ; Neuhaus D
    Nucleic Acids Res; 2021 Feb; 49(4):2266-2288. PubMed ID: 33511412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.