These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29487285)

  • 81. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification.
    Langelier MF; Eisemann T; Riccio AA; Pascal JM
    Curr Opin Struct Biol; 2018 Dec; 53():187-198. PubMed ID: 30481609
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Rapid Detection and Signaling of DNA Damage by PARP-1.
    Pandey N; Black BE
    Trends Biochem Sci; 2021 Sep; 46(9):744-757. PubMed ID: 33674152
    [TBL] [Abstract][Full Text] [Related]  

  • 83. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling.
    van Beek L; McClay É; Patel S; Schimpl M; Spagnolo L; Maia de Oliveira T
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066057
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo.
    Shao Z; Lee BJ; Rouleau-Turcotte É; Langelier MF; Lin X; Estes VM; Pascal JM; Zha S
    Nucleic Acids Res; 2020 Sep; 48(17):9694-9709. PubMed ID: 32890402
    [TBL] [Abstract][Full Text] [Related]  

  • 85. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage.
    Smith R; Zentout S; Rother M; Bigot N; Chapuis C; Mihuț A; Zobel FF; Ahel I; van Attikum H; Timinszky G; Huet S
    Nat Struct Mol Biol; 2023 May; 30(5):678-691. PubMed ID: 37106138
    [TBL] [Abstract][Full Text] [Related]  

  • 86. PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation.
    Sun Y; Chen J; Huang SN; Su YP; Wang W; Agama K; Saha S; Jenkins LM; Pascal JM; Pommier Y
    Nat Commun; 2021 Aug; 12(1):5010. PubMed ID: 34408146
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Serine-linked PARP1 auto-modification controls PARP inhibitor response.
    Prokhorova E; Zobel F; Smith R; Zentout S; Gibbs-Seymour I; Schützenhofer K; Peters A; Groslambert J; Zorzini V; Agnew T; Brognard J; Nielsen ML; Ahel D; Huet S; Suskiewicz MJ; Ahel I
    Nat Commun; 2021 Jul; 12(1):4055. PubMed ID: 34210965
    [TBL] [Abstract][Full Text] [Related]  

  • 88. PARP-1 and its associated nucleases in DNA damage response.
    Wang Y; Luo W; Wang Y
    DNA Repair (Amst); 2019 Sep; 81():102651. PubMed ID: 31302005
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2019 May; 47(8):3811-3827. PubMed ID: 30799503
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Cooperative nucleic acid binding by Poly ADP-ribose polymerase 1.
    Melikishvili M; Fried MG; Fondufe-Mittendorf YN
    Sci Rep; 2024 Mar; 14(1):7530. PubMed ID: 38553566
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke.
    Yang L; Guttman L; Dawson VL; Dawson TM
    Biochem Pharmacol; 2024 Oct; 228():116174. PubMed ID: 38552851
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Discovery of Novel 4-Hydroxyquinazoline Derivatives: In Silico, In Vivo and In Vitro Studies Using Primary PARPi-Resistant Cell Lines.
    Zhu L; Liu B; Jin F; Cao W; Xu G; Zhang X; Peng P; Gao D; Wang B; Feng K
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38543043
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Novel modifications of PARP inhibitor veliparib increase PARP1 binding to DNA breaks.
    Velagapudi UK; Rouleau-Turcotte É; Billur R; Shao X; Patil M; Black BE; Pascal JM; Talele TT
    Biochem J; 2024 Mar; 481(6):437-460. PubMed ID: 38372302
    [TBL] [Abstract][Full Text] [Related]  

  • 95. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation.
    Sang CC; Moore G; Tereshchenko M; Nosella ML; Zhang H; Alderson TR; Dasovich M; Leung A; Finkelstein IJ; Forman-Kay JD; Lee HO
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328070
    [TBL] [Abstract][Full Text] [Related]  

  • 96. PARP trapping is governed by the PARP inhibitor dissociation rate constant.
    Gopal AA; Fernandez B; Delano J; Weissleder R; Dubach JM
    Cell Chem Biol; 2024 Jul; 31(7):1373-1382.e10. PubMed ID: 38262416
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Inhibition of host PARP1 contributes to the anti-inflammatory and antitubercular activity of pyrazinamide.
    Krug S; Gupta M; Kumar P; Feller L; Ihms EA; Kang BG; Srikrishna G; Dawson TM; Dawson VL; Bishai WR
    Nat Commun; 2023 Dec; 14(1):8161. PubMed ID: 38071218
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Structural and biochemical analysis of the PARP1-homology region of PARP4/vault PARP.
    Frigon L; Pascal JM
    Nucleic Acids Res; 2023 Dec; 51(22):12492-12507. PubMed ID: 37971310
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Molecular basis of threonine ADP-ribosylation of ubiquitin by bacterial ARTs.
    Tan J; Xu Y; Wang X; Yan F; Xian W; Liu X; Chen Y; Zhu Y; Zhou Y
    Nat Chem Biol; 2024 Apr; 20(4):463-472. PubMed ID: 37945894
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A ribose-functionalized NAD
    Stephens EN; Zhang XN; Lam AT; Li J; Pei H; Louie SG; Wang CCC; Zhang Y
    Chem Commun (Camb); 2023 Nov; 59(93):13843-13846. PubMed ID: 37921487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.