BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29487332)

  • 1. Electrofusion of single cells in picoliter droplets.
    Schoeman RM; van den Beld WTE; Kemna EWM; Wolbers F; Eijkel JCT; van den Berg A
    Sci Rep; 2018 Feb; 8(1):3714. PubMed ID: 29487332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.
    Kemna EW; Wolbers F; Vermes I; van den Berg A
    Electrophoresis; 2011 Nov; 32(22):3138-46. PubMed ID: 22025094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput dielectrophoresis-based cell electrofusion microfluidic device.
    Hu N; Yang J; Yin ZQ; Ai Y; Qian S; Svir IB; Xia B; Yan JW; Hou WS; Zheng XL
    Electrophoresis; 2011 Sep; 32(18):2488-95. PubMed ID: 21853446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient generation of stable antibody forming hybridoma cells by electrofusion.
    Schmitt JJ; Zimmermann U; Neil GA
    Hybridoma; 1989 Feb; 8(1):107-15. PubMed ID: 2925206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells.
    Trontelj K; Rebersek M; Kanduser M; Serbec VC; Sprohar M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):124-9. PubMed ID: 18667367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic approach towards hybridoma generation for cancer immunotherapy.
    Lu YT; Pendharkar GP; Lu CH; Chang CM; Liu CH
    Oncotarget; 2015 Nov; 6(36):38764-76. PubMed ID: 26462149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro Cell Fusion for Hybridoma Production.
    Greenfield EA
    Cold Spring Harb Protoc; 2019 Oct; 2019(10):. PubMed ID: 31575798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions.
    Schmitt JJ; Zimmermann U
    Biochim Biophys Acta; 1989 Jul; 983(1):42-50. PubMed ID: 2758049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell electrofusion using nanosecond electric pulses.
    Rems L; Ušaj M; Kandušer M; Reberšek M; Miklavčič D; Pucihar G
    Sci Rep; 2013 Nov; 3():3382. PubMed ID: 24287643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased human hybridoma formation by electrofusion of human B cells with heteromyeloma SPAM-8 cells.
    Panova I; Gustafsson B
    Hybridoma; 1995 Jun; 14(3):265-9. PubMed ID: 7590790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.
    Hamdi FS; Français O; Dufour-Gergam E; Le Pioufle B
    Bioelectrochemistry; 2014 Dec; 100():27-35. PubMed ID: 25012938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrofusion by a bipolar pulsed electric field: Increased cell fusion efficiency for monoclonal antibody production.
    Ke Q; Li C; Wu M; Ge L; Yao C; Yao C; Mi Y
    Bioelectrochemistry; 2019 Jun; 127():171-179. PubMed ID: 30831355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability.
    Gel M; Suzuki S; Kimura Y; Kurosawa O; Techaumnat B; Oana H; Washizu M
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):300-5. PubMed ID: 20142145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generation of Ig-secreting UC 729-6 derived human hybridomas by electrofusion.
    Pratt M; Mikhalev A; Glassy MC
    Hybridoma; 1987 Oct; 6(5):469-77. PubMed ID: 3500113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines.
    Kandušer M; Ušaj M
    Expert Opin Drug Deliv; 2014 Dec; 11(12):1885-98. PubMed ID: 25010248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrofusion between heterogeneous-sized mammalian cells in a pellet: potential applications in drug delivery and hybridoma formation.
    Li LH; Hensen ML; Zhao YL; Hui SW
    Biophys J; 1996 Jul; 71(1):479-86. PubMed ID: 8804630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages.
    Kirschbaum M; Guernth-Marschner CR; Cherré S; de Pablo Peña A; Jaeger MS; Kroczek RA; Schnelle T; Mueller T; Duschl C
    Lab Chip; 2012 Feb; 12(3):443-50. PubMed ID: 22124613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Establishment of hybridoma secreting anti-mycobacteria monoclonal antibody by using electrofusion technique].
    Guo M; Pan Z; Wang H
    Wei Sheng Wu Xue Bao; 1998 Oct; 38(5):393-5. PubMed ID: 12549406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet.
    Kimura Y; Gel M; Techaumnat B; Oana H; Kotera H; Washizu M
    Electrophoresis; 2011 Sep; 32(18):2496-501. PubMed ID: 21874655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.