BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 29487332)

  • 21. Microfluidic control of cell pairing and fusion.
    Skelley AM; Kirak O; Suh H; Jaenisch R; Voldman J
    Nat Methods; 2009 Feb; 6(2):147-52. PubMed ID: 19122668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A microfluidic device for electrofusion of biological vesicles.
    Tresset G; Takeuchi S
    Biomed Microdevices; 2004 Sep; 6(3):213-8. PubMed ID: 15377830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CD19+ B lymphocytes are the major source of human antibody-secreting hybridomas generated by electrofusion.
    Schmidt E; Leinfelder U; Gessner P; Zillikens D; Bröcker EB; Zimmermann U
    J Immunol Methods; 2001 Sep; 255(1-2):93-102. PubMed ID: 11470290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated analysis of dynamic behavior of single cells in picoliter droplets.
    Khorshidi MA; Rajeswari PK; Wählby C; Joensson HN; Andersson Svahn H
    Lab Chip; 2014 Mar; 14(5):931-7. PubMed ID: 24385254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell activation by CpG ODN leads to improved electrofusion in hybridoma production.
    Kato M; Sasamori E; Chiba T; Hanyu Y
    J Immunol Methods; 2011 Oct; 373(1-2):102-10. PubMed ID: 21878337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microscale production of hybridomas by hypo-osmolar electrofusion.
    Zimmermann U; Klöck G; Gessner P; Sammons DW; Neil GA
    Hum Antibodies Hybridomas; 1992 Jan; 3(1):14-8. PubMed ID: 1576318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient hybridization of mouse-human cell lines by means of hypo-osmolar electrofusion.
    Zimmermann U; Gessner P; Schnettler R; Perkins S; Foung SK
    J Immunol Methods; 1990 Nov; 134(1):43-50. PubMed ID: 2230148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of an electroporation apparatus for the production of murine hybridomas.
    Hewish DR; Werkmeister JA
    J Immunol Methods; 1989 Jun; 120(2):285-9. PubMed ID: 2472456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybridoma technologies for antibody production.
    Tomita M; Tsumoto K
    Immunotherapy; 2011 Mar; 3(3):371-80. PubMed ID: 21395379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Automated Single-Cell Droplet-Digital Microfluidic Platform for Monoclonal Antibody Discovery.
    Ahmadi F; Tran H; Letourneau N; Little SR; Fortin A; Moraitis AN; Shih SCC
    Small; 2024 Jun; 20(26):e2308950. PubMed ID: 38441226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution analyses of cell fusion dynamics in a biochip.
    Mottet G; Le Pioufle B; Mir LM
    Electrophoresis; 2012 Aug; 33(16):2508-15. PubMed ID: 22899258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cell electrofusion microfluidic chip using discrete coplanar vertical sidewall microelectrodes.
    Hu N; Yang J; Qian S; Zhang X; Joo SW; Zheng X
    Electrophoresis; 2012 Jul; 33(13):1980-6. PubMed ID: 22806463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Bipolar and Unipolar Pulses in Cell Electrofusion: Simulation and Experimental Research.
    Li C; Ke Q; Yao C; Yao C; Mi Y; Wu M; Ge L
    IEEE Trans Biomed Eng; 2019 May; 66(5):1353-1360. PubMed ID: 30281431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.
    Kamalakshakurup G; Lee AP
    Lab Chip; 2017 Dec; 17(24):4324-4333. PubMed ID: 29138790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A planar dielectrophoresis-based chip for high-throughput cell pairing.
    Wu C; Chen R; Liu Y; Yu Z; Jiang Y; Cheng X
    Lab Chip; 2017 Nov; 17(23):4008-4014. PubMed ID: 29115319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cell electrofusion microfluidic device integrated with 3D thin-film microelectrode arrays.
    Hu N; Yang J; Qian S; Joo SW; Zheng X
    Biomicrofluidics; 2011 Sep; 5(3):34121-3412112. PubMed ID: 22662046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antigen-based immunofluorescence analysis of B-cell targeting: advanced technology for the generation of novel monoclonal antibodies with high efficiency and selectivity.
    Tomita M; Fukuda T; Ozu A; Kimura K; Tsong TY; Yoshimura T
    Hybridoma (Larchmt); 2006 Oct; 25(5):283-92. PubMed ID: 17044784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion.
    Clow AL; Gaynor PT; Oback BJ
    Biomed Microdevices; 2010 Oct; 12(5):777-86. PubMed ID: 20499188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesh-integrated microdroplet array for simultaneous merging and storage of single-cell droplets.
    Um E; Rha E; Choi SL; Lee SG; Park JK
    Lab Chip; 2012 May; 12(9):1594-7. PubMed ID: 22422143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.