These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29487901)

  • 1. Remnants of Eoarchean continental crust derived from a subducted proto-arc.
    Ge R; Zhu W; Wilde SA; Wu H
    Sci Adv; 2018 Feb; 4(2):eaao3159. PubMed ID: 29487901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Earth's first stable continents did not form by subduction.
    Johnson TE; Brown M; Gardiner NJ; Kirkland CL; Smithies RH
    Nature; 2017 Mar; 543(7644):239-242. PubMed ID: 28241147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No evidence for high-pressure melting of Earth's crust in the Archean.
    Smithies RH; Lu Y; Johnson TE; Kirkland CL; Cassidy KF; Champion DC; Mole DR; Zibra I; Gessner K; Sapkota J; De Paoli MC; Poujol M
    Nat Commun; 2019 Dec; 10(1):5559. PubMed ID: 31804503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archean continental crust formed by magma hybridization and voluminous partial melting.
    Hernández-Montenegro JD; Palin RM; Zuluaga CA; Hernández-Uribe D
    Sci Rep; 2021 Mar; 11(1):5263. PubMed ID: 33664326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen isotopes trace the origins of Earth's earliest continental crust.
    Smithies RH; Lu Y; Kirkland CL; Johnson TE; Mole DR; Champion DC; Martin L; Jeon H; Wingate MTD; Johnson SP
    Nature; 2021 Apr; 592(7852):70-75. PubMed ID: 33790444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics.
    Nebel O; Capitanio FA; Moyen JF; Weinberg RF; Clos F; Nebel-Jacobsen YJ; Cawood PA
    Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2132):. PubMed ID: 30275165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of early continental crust by partial melting of eclogite.
    Rapp RP; Shimizu N; Norman MD
    Nature; 2003 Oct; 425(6958):605-9. PubMed ID: 14534583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of the upper mantle by convergent tectonics in the Early Earth.
    Perchuk AL; Gerya TV; Zakharov VS; Griffin WL
    Sci Rep; 2021 Nov; 11(1):21489. PubMed ID: 34728677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oceanic slab melting and mantle metasomatism.
    Scaillet B; Prouteau G
    Sci Prog; 2001; 84(Pt 4):335-54. PubMed ID: 11838241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barium content of Archaean continental crust reveals the onset of subduction was not global.
    Huang G; Mitchell RN; Palin RM; Spencer CJ; Guo J
    Nat Commun; 2022 Nov; 13(1):6553. PubMed ID: 36323691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.
    Zhao ZF; Dai LQ; Zheng YF
    Sci Rep; 2013 Dec; 3():3413. PubMed ID: 24301173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous plate subduction marked by the rise of alkali magmatism 2.1 billion years ago.
    Liu H; Sun WD; Zartman R; Tang M
    Nat Commun; 2019 Jul; 10(1):3408. PubMed ID: 31363091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary.
    Wang X; Tang M; Moyen J; Wang D; Kröner A; Hawkesworth C; Xia X; Xie H; Anhaeusser C; Hofmann A; Li J; Li L
    Natl Sci Rev; 2022 Mar; 9(3):nwab136. PubMed ID: 35265338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous Hadean crust with ambient mantle affinity recorded in detrital zircons of the Green Sandstone Bed, South Africa.
    Drabon N; Byerly BL; Byerly GR; Wooden JL; Keller CB; Lowe DR
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33602806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continental crust formation on early Earth controlled by intrusive magmatism.
    Rozel AB; Golabek GJ; Jain C; Tackley PJ; Gerya T
    Nature; 2017 May; 545(7654):332-335. PubMed ID: 28482358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics.
    Gamal El Dien H; Doucet LS; Murphy JB; Li ZX
    Sci Rep; 2020 Jun; 10(1):9461. PubMed ID: 32528085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling lower continental crust in the North China craton.
    Gao S; Rudnick RL; Yuan HL; Liu XM; Liu YS; Xu WL; Ling WL; Ayers J; Wang XC; Wang QH
    Nature; 2004 Dec; 432(7019):892-7. PubMed ID: 15602559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton.
    Sun G; Liu S; Cawood PA; Tang M; van Hunen J; Gao L; Hu Y; Hu F
    Nat Commun; 2021 Jun; 12(1):3888. PubMed ID: 34162844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics.
    Ning W; Kusky T; Wang L; Huang B
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2117529119. PubMed ID: 35377787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The earliest evidence for modern-style plate tectonics recorded by HP-LT metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo.
    François C; Debaille V; Paquette JL; Baudet D; Javaux EJ
    Sci Rep; 2018 Oct; 8(1):15452. PubMed ID: 30337730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.