These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29487930)

  • 1. Flow-induced dissolution of femtoliter surface droplet arrays.
    Bao L; Spandan V; Yang Y; Dyett B; Verzicco R; Lohse D; Zhang X
    Lab Chip; 2018 Mar; 18(7):1066-1074. PubMed ID: 29487930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled addition of new liquid component into surface droplet arrays by solvent exchange.
    Li M; Yu H; Bao L; Dyett B; Zhang X
    J Colloid Interface Sci; 2019 May; 543():164-173. PubMed ID: 30802763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation, growth and applications of femtoliter droplets on a microlens.
    Lei L; Li J; Yu H; Bao L; Peng S; Zhang X
    Phys Chem Chem Phys; 2018 Feb; 20(6):4226-4237. PubMed ID: 29364296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the liquid layer thickness on the dissolution of immersed surface droplets.
    Xie Q; Harting J
    Soft Matter; 2019 Aug; 15(32):6461-6468. PubMed ID: 31292583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of Femtoliter Liquid on a Microlens: A Way to Flexible Dual-Microlens Arrays.
    Bao L; Pinchasik BE; Lei L; Xu Q; Hao H; Wang X; Zhang X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27386-27393. PubMed ID: 31268287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of surface nanodroplets under controlled flow conditions.
    Zhang X; Lu Z; Tan H; Bao L; He Y; Sun C; Lohse D
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9253-7. PubMed ID: 26159418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization of Femtoliter Surface Droplet Arrays Revealed by Synchrotron Small-Angle X-ray Scattering.
    Dyett B; Zychowski L; Bao L; Meikle TG; Peng S; Yu H; Li M; Strachan J; Kirby N; Logan A; Conn CE; Zhang X
    Langmuir; 2018 Aug; 34(32):9470-9476. PubMed ID: 30021434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Scale Flow-Mediated Formation and Potential Applications of Surface Nanodroplets.
    Yu H; Peng S; Lei L; Zhang J; Greaves TL; Zhang X
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22679-87. PubMed ID: 27500306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective and convective effects compete in patterns of dissolving surface droplets.
    Laghezza G; Dietrich E; Yeomans JM; Ledesma-Aguilar R; Kooij ES; Zandvliet HJ; Lohse D
    Soft Matter; 2016 Jun; 12(26):5787-96. PubMed ID: 27270609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological Transformation of Surface Femtodroplets upon Dissolution.
    Peng S; Pinchasik BE; Hao H; Möhwald H; Zhang X
    J Phys Chem Lett; 2017 Feb; 8(3):584-590. PubMed ID: 28080055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of nanodroplets on a still microfiber under flow conditions.
    Yu H; Rump M; Maheshwari S; Bao L; Zhang X
    Phys Chem Chem Phys; 2018 Jul; 20(27):18252-18261. PubMed ID: 29947379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed mode of dissolving immersed nanodroplets at a solid-water interface.
    Zhang X; Wang J; Bao L; Dietrich E; van der Veen RC; Peng S; Friend J; Zandvliet HJ; Yeo L; Lohse D
    Soft Matter; 2015 Mar; 11(10):1889-900. PubMed ID: 25605229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flow-free droplet-based device for high throughput polymorphic crystallization.
    Yang SM; Zhang D; Chen W; Chen SC
    Lab Chip; 2015 Jun; 15(12):2680-7. PubMed ID: 25994475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwetting of pH-Sensitive Surface and Anisotropic MoS
    Lu Z; Lu Z; Peng S; Zhang X; Liu Q
    Langmuir; 2016 Nov; 32(43):11273-11279. PubMed ID: 27477439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth dynamics of surface nanodroplets during solvent exchange at varying flow rates.
    Dyett B; Kiyama A; Rump M; Tagawa Y; Lohse D; Zhang X
    Soft Matter; 2018 Jun; 14(25):5197-5204. PubMed ID: 29780988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the Growth Modes of Femtoliter Sessile Droplets Nucleating on Chemically Patterned Surfaces.
    Bao L; Werbiuk Z; Lohse D; Zhang X
    J Phys Chem Lett; 2016 Mar; 7(6):1055-9. PubMed ID: 26938312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of surface nanodroplets facing a structured microchannel wall.
    Yu H; Maheshwari S; Zhu J; Lohse D; Zhang X
    Lab Chip; 2017 Apr; 17(8):1496-1504. PubMed ID: 28345085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Nanodroplets: Formation, Dissolution, and Applications.
    Qian J; Arends GF; Zhang X
    Langmuir; 2019 Oct; 35(39):12583-12596. PubMed ID: 31132276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.