BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29487966)

  • 1. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Janus effect of antifreeze proteins on ice nucleation.
    Liu K; Wang C; Ma J; Shi G; Yao X; Fang H; Song Y; Wang J
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14739-14744. PubMed ID: 27930318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ice-binding site of antifreeze protein irreversibly binds to cell surface for its hypothermic protective function.
    Yang Y; Yamauchi A; Tsuda S; Kuramochi M; Mio K; Sasaki YC; Arai T
    Biochem Biophys Res Commun; 2023 Nov; 682():343-348. PubMed ID: 37837755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent Mechanisms of Ice Growth Inhibition by Antifreeze Proteins.
    Drori R; Stevens CA
    Methods Mol Biol; 2024; 2730():169-181. PubMed ID: 37943458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paradoxical effects on ice nucleation are intrinsic to a small winter flounder antifreeze protein.
    Chang XJ; Sands DC; Ewart KV
    Biochim Biophys Acta Proteins Proteom; 2024 Jan; 1872(1):140973. PubMed ID: 37956730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics and applications of plant-derived antifreeze proteins in frozen dough: A review.
    Obadi M; Xu B
    Int J Biol Macromol; 2024 Jan; 255():128202. PubMed ID: 37979748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended Temperature Range of the Ice-Binding Protein Activity.
    Sirotinskaya V; Bar Dolev M; Yashunsky V; Bahari L; Braslavsky I
    Langmuir; 2024 Apr; 40(14):7395-7404. PubMed ID: 38527127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye.
    Stressmann M; Kitao S; Griffith M; Moresoli C; Bravo LA; Marangoni AG
    Plant Physiol; 2004 May; 135(1):364-76. PubMed ID: 15122015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-range protein-water dynamics in hyperactive insect antifreeze proteins.
    Meister K; Ebbinghaus S; Xu Y; Duman JG; DeVries A; Gruebele M; Leitner DM; Havenith M
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1617-22. PubMed ID: 23277543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming.
    Cziko PA; DeVries AL; Evans CW; Cheng CH
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14583-8. PubMed ID: 25246548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation.
    Kondo H; Hanada Y; Sugimoto H; Hoshino T; Garnham CP; Davies PL; Tsuda S
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9360-5. PubMed ID: 22645341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physics of Ice Nucleation and Antinucleation: Action of Ice-Binding Proteins.
    Melnik BS; Glukhova KA; Sokolova Voronova EA; Balalaeva IV; Garbuzynskiy SO; Finkelstein AV
    Biomolecules; 2023 Dec; 14(1):. PubMed ID: 38254654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review.
    Ghalamara S; Silva S; Brazinha C; Pintado M
    Bioresour Bioprocess; 2022 Jan; 9(1):5. PubMed ID: 38647561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychrophiles to control ice-water phase changes in frost-susceptible soils.
    Rahman R; Bheemasetti TV; Govil T; Sani R
    Sci Rep; 2024 Jan; 14(1):477. PubMed ID: 38177218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the molecular recognition repertoire of antifreeze polypeptides: effects on nucleoside crystal growth.
    Wang S; Wen X; Nikolovski P; Juwita V; Arifin JF
    Chem Commun (Camb); 2012 Dec; 48(94):11555-7. PubMed ID: 23089878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of Antifreeze Proteins on Ice Is Determined by Adsorption.
    Thosar AU; Shalom Y; Braslavsky I; Drori R; Patel AJ
    J Am Chem Soc; 2023 Aug; 145(32):17597-17602. PubMed ID: 37527507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic Effect of Hyperactive Antifreeze Protein on Inhibition of Gas-Hydrate Growth by Hydrophobic and Hydrophilic Groups.
    Zhang N; Du YT; Yao PQ; Huang HY; Zhang LR; Zhang FS; Liu JJ
    J Phys Chem B; 2023 Dec; 127(49):10469-10477. PubMed ID: 38018897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Can Ice Emerge at 0 °C?
    Finkelstein AV; Garbuzynskiy SO; Melnik BS
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A brief review of applications of antifreeze proteins in cryopreservation and metabolic genetic engineering.
    Naing AH; Kim CK
    3 Biotech; 2019 Sep; 9(9):329. PubMed ID: 31448185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Compounds to Control Ice Nucleation and Recrystallization.
    William N; Mangan S; Ben RN; Acker JP
    Annu Rev Biomed Eng; 2023 Jun; 25():333-362. PubMed ID: 37104651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.