BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29488014)

  • 1. Tyraminergic modulation of agonistic outcomes in crayfish.
    Momohara Y; Aonuma H; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 May; 204(5):465-473. PubMed ID: 29488014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminergic control of social status in crayfish agonistic encounters.
    Momohara Y; Kanai A; Nagayama T
    PLoS One; 2013; 8(9):e74489. PubMed ID: 24058575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cAMP signalling in winner and loser effects in crayfish agonistic encounters.
    Momohara Y; Minami H; Kanai A; Nagayama T
    Eur J Neurosci; 2016 Jul; 44(2):1886-95. PubMed ID: 27086724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposing effects of dopamine on agonistic behaviour in crayfish.
    Ibuchi K; Nagayama T
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34128529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fighter's comeback: dopamine is necessary for recovery of aggression after social defeat in crickets.
    Rillich J; Stevenson PA
    Horm Behav; 2014 Sep; 66(4):696-704. PubMed ID: 25268421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system: an immunocytochemical study.
    Kononenko NL; Wolfenberg H; Pflüger HJ
    J Comp Neurol; 2009 Feb; 512(4):433-52. PubMed ID: 19025988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the herbicide metolachlor on agonistic behavior in the crayfish, Orconectes rusticus.
    Cook ME; Moore PA
    Arch Environ Contam Toxicol; 2008 Jul; 55(1):94-102. PubMed ID: 18060587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of agonistic encounters in dominance hierarchy formation in juvenile crayfish.
    Sato D; Nagayama T
    J Exp Biol; 2012 Apr; 215(Pt 7):1210-7. PubMed ID: 22399667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (
    Cook CN; Brent CS; Breed MD
    J Exp Biol; 2017 May; 220(Pt 10):1925-1930. PubMed ID: 28314750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel changes in agonistic and non-agonistic behaviors during dominance hierarchy formation in crayfish.
    Herberholz J; Sen MM; Edwards DH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Apr; 189(4):321-5. PubMed ID: 12687399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlocking of chelae is a key factor for dominance hierarchy formation in crayfish.
    Ueno R; Nagayama T
    J Exp Biol; 2012 Aug; 215(Pt 16):2841-8. PubMed ID: 22837457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests.
    Szczuka A; Korczyńska J; Wnuk A; Symonowicz B; Gonzalez Szwacka A; Mazurkiewicz P; Kostowski W; Godzińska EJ
    Acta Neurobiol Exp (Wars); 2013; 73(4):495-520. PubMed ID: 24457641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera).
    Fussnecker BL; Smith BH; Mustard JA
    J Insect Physiol; 2006 Oct; 52(10):1083-92. PubMed ID: 17028016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking physiological processes and feeding behaviors by octopamine.
    Selcho M; Pauls D
    Curr Opin Insect Sci; 2019 Dec; 36():125-130. PubMed ID: 31606580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of synaptic responses in ascending interneurones following acquisition of social dominance in crayfish.
    Abe T; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 May; 207(3):415-428. PubMed ID: 33772639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of octopamine and tyramine on the central pattern generator for Manduca flight.
    Vierk R; Pflueger HJ; Duch C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):265-77. PubMed ID: 19137318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of octopamine and tyramine in Drosophila larval locomotion.
    Selcho M; Pauls D; El Jundi B; Stocker RF; Thum AS
    J Comp Neurol; 2012 Nov; 520(16):3764-85. PubMed ID: 22627970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyramine receptor (SER-2) isoforms are involved in the regulation of pharyngeal pumping and foraging behavior in Caenorhabditis elegans.
    Rex E; Molitor SC; Hapiak V; Xiao H; Henderson M; Komuniecki R
    J Neurochem; 2004 Dec; 91(5):1104-15. PubMed ID: 15569254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae.
    Saraswati S; Fox LE; Soll DR; Wu CF
    J Neurobiol; 2004 Mar; 58(4):425-41. PubMed ID: 14978721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposing Actions of Octopamine and Tyramine on Honeybee Vision.
    Schilcher F; Thamm M; Strube-Bloss M; Scheiner R
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.