These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 29488182)
1. Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation. Bassi APG; Meneguello L; Paraluppi AL; Sanches BCP; Ceccato-Antonini SR Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1661-1672. PubMed ID: 29488182 [TBL] [Abstract][Full Text] [Related]
2. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Pereira LF; Lucatti E; Basso LC; de Morais MA Antonie Van Leeuwenhoek; 2014 Mar; 105(3):481-9. PubMed ID: 24370978 [TBL] [Abstract][Full Text] [Related]
3. Volatile phenols are produced by strains of Dekkera bruxellensis under Brazilian fuel ethanol industry-like conditions. Silva LFL; Réco AS; Peña R; Ganga MA; Ceccato-Antonini SR FEMS Microbiol Lett; 2018 Nov; 365(21):. PubMed ID: 30239698 [TBL] [Abstract][Full Text] [Related]
4. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae. Bassi AP; da Silva JC; Reis VR; Ceccato-Antonini SR World J Microbiol Biotechnol; 2013 Sep; 29(9):1661-76. PubMed ID: 23536198 [TBL] [Abstract][Full Text] [Related]
5. Potassium metabisulphite as a potential biocide against Dekkera bruxellensis in fuel ethanol fermentations. Bassi AP; Paraluppi AL; Reis VR; Ceccato-Antonini SR Lett Appl Microbiol; 2015 Mar; 60(3):248-58. PubMed ID: 25421952 [TBL] [Abstract][Full Text] [Related]
6. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae. Meneghin MC; Bassi AP; Codato CB; Reis VR; Ceccato-Antonini SR Yeast; 2013 Aug; 30(8):295-305. PubMed ID: 23658026 [TBL] [Abstract][Full Text] [Related]
7. The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation. de Souza RB; dos Santos BM; de Fátima Rodrigues de Souza R; da Silva PK; Lucena BT; de Morais MA J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1645-50. PubMed ID: 22842986 [TBL] [Abstract][Full Text] [Related]
8. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis. Blomqvist J; South E; Tiukova I; Momeni MH; Hansson H; Ståhlberg J; Horn SJ; Schnürer J; Passoth V Lett Appl Microbiol; 2011 Jul; 53(1):73-8. PubMed ID: 21535044 [TBL] [Abstract][Full Text] [Related]
9. Distribution of Dekkera bruxellensis in a sugarcane-based fuel ethanol fermentation plant. da Silva TC; Leite FC; De Morais MA Lett Appl Microbiol; 2016 Apr; 62(4):354-8. PubMed ID: 26928357 [TBL] [Abstract][Full Text] [Related]
10. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Pereira LF; Bassi AP; Avansini SH; Neto AG; Brasileiro BT; Ceccato-Antonini SR; de Morais MA Antonie Van Leeuwenhoek; 2012 Mar; 101(3):529-39. PubMed ID: 22041979 [TBL] [Abstract][Full Text] [Related]
11. Interaction of Lactobacillus vini with the ethanol-producing yeasts Dekkera bruxellensis and Saccharomyces cerevisiae. Tiukova I; Eberhard T; Passoth V Biotechnol Appl Biochem; 2014; 61(1):40-4. PubMed ID: 23772864 [TBL] [Abstract][Full Text] [Related]
12. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2. Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249 [TBL] [Abstract][Full Text] [Related]
13. Ethanol addition enhances acid treatment to eliminate Lactobacillus fermentum from the fermentation process for fuel ethanol production. Costa MAS; Cerri BC; Ceccato-Antonini SR Lett Appl Microbiol; 2018 Jan; 66(1):77-85. PubMed ID: 29108112 [TBL] [Abstract][Full Text] [Related]
14. The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. de Barros Pita W; Leite FC; de Souza Liberal AT; Simões DA; de Morais MA Antonie Van Leeuwenhoek; 2011 Jun; 100(1):99-107. PubMed ID: 21350883 [TBL] [Abstract][Full Text] [Related]
15. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2. Reis VR; Bassi APG; Cerri BC; Almeida AR; Carvalho IGB; Bastos RG; Ceccato-Antonini SR AMB Express; 2018 Feb; 8(1):23. PubMed ID: 29453625 [TBL] [Abstract][Full Text] [Related]
16. Effect of contamination with Lactobacillus fermentum I2 on ethanol production by Spathaspora passalidarum. Collograi KC; da Costa AC; Ienczak JL Appl Microbiol Biotechnol; 2019 Jun; 103(12):5039-5050. PubMed ID: 30989252 [TBL] [Abstract][Full Text] [Related]
17. Biocontrol of Brettanomyces/Dekkera bruxellensis in alcoholic fermentations using saccharomycin-overproducing Saccharomyces cerevisiae strains. Branco P; Sabir F; Diniz M; Carvalho L; Albergaria H; Prista C Appl Microbiol Biotechnol; 2019 Apr; 103(7):3073-3083. PubMed ID: 30734124 [TBL] [Abstract][Full Text] [Related]
18. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. de Souza Liberal AT; Basílio AC; do Monte Resende A; Brasileiro BT; da Silva-Filho EA; de Morais JO; Simões DA; de Morais MA J Appl Microbiol; 2007 Feb; 102(2):538-47. PubMed ID: 17241360 [TBL] [Abstract][Full Text] [Related]
19. Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must. Bonatelli ML; Ienczak JL; Labate CA Antonie Van Leeuwenhoek; 2019 Aug; 112(8):1177-1187. PubMed ID: 30830509 [TBL] [Abstract][Full Text] [Related]